|
from pymilvus import MilvusClient as Client |
|
from pymilvus import FieldSchema, DataType |
|
import json |
|
|
|
from typing import Optional |
|
|
|
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult |
|
from open_webui.config import ( |
|
MILVUS_URI, |
|
) |
|
|
|
|
|
class MilvusClient: |
|
def __init__(self): |
|
self.collection_prefix = "open_webui" |
|
self.client = Client(uri=MILVUS_URI) |
|
|
|
def _result_to_get_result(self, result) -> GetResult: |
|
ids = [] |
|
documents = [] |
|
metadatas = [] |
|
|
|
for match in result: |
|
_ids = [] |
|
_documents = [] |
|
_metadatas = [] |
|
for item in match: |
|
_ids.append(item.get("id")) |
|
_documents.append(item.get("data", {}).get("text")) |
|
_metadatas.append(item.get("metadata")) |
|
|
|
ids.append(_ids) |
|
documents.append(_documents) |
|
metadatas.append(_metadatas) |
|
|
|
return GetResult( |
|
**{ |
|
"ids": ids, |
|
"documents": documents, |
|
"metadatas": metadatas, |
|
} |
|
) |
|
|
|
def _result_to_search_result(self, result) -> SearchResult: |
|
ids = [] |
|
distances = [] |
|
documents = [] |
|
metadatas = [] |
|
|
|
for match in result: |
|
_ids = [] |
|
_distances = [] |
|
_documents = [] |
|
_metadatas = [] |
|
|
|
for item in match: |
|
_ids.append(item.get("id")) |
|
_distances.append(item.get("distance")) |
|
_documents.append(item.get("entity", {}).get("data", {}).get("text")) |
|
_metadatas.append(item.get("entity", {}).get("metadata")) |
|
|
|
ids.append(_ids) |
|
distances.append(_distances) |
|
documents.append(_documents) |
|
metadatas.append(_metadatas) |
|
|
|
return SearchResult( |
|
**{ |
|
"ids": ids, |
|
"distances": distances, |
|
"documents": documents, |
|
"metadatas": metadatas, |
|
} |
|
) |
|
|
|
def _create_collection(self, collection_name: str, dimension: int): |
|
schema = self.client.create_schema( |
|
auto_id=False, |
|
enable_dynamic_field=True, |
|
) |
|
schema.add_field( |
|
field_name="id", |
|
datatype=DataType.VARCHAR, |
|
is_primary=True, |
|
max_length=65535, |
|
) |
|
schema.add_field( |
|
field_name="vector", |
|
datatype=DataType.FLOAT_VECTOR, |
|
dim=dimension, |
|
description="vector", |
|
) |
|
schema.add_field(field_name="data", datatype=DataType.JSON, description="data") |
|
schema.add_field( |
|
field_name="metadata", datatype=DataType.JSON, description="metadata" |
|
) |
|
|
|
index_params = self.client.prepare_index_params() |
|
index_params.add_index( |
|
field_name="vector", |
|
index_type="HNSW", |
|
metric_type="COSINE", |
|
params={"M": 16, "efConstruction": 100}, |
|
) |
|
|
|
self.client.create_collection( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
schema=schema, |
|
index_params=index_params, |
|
) |
|
|
|
def has_collection(self, collection_name: str) -> bool: |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
return self.client.has_collection( |
|
collection_name=f"{self.collection_prefix}_{collection_name}" |
|
) |
|
|
|
def delete_collection(self, collection_name: str): |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
return self.client.drop_collection( |
|
collection_name=f"{self.collection_prefix}_{collection_name}" |
|
) |
|
|
|
def search( |
|
self, collection_name: str, vectors: list[list[float | int]], limit: int |
|
) -> Optional[SearchResult]: |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
result = self.client.search( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
data=vectors, |
|
limit=limit, |
|
output_fields=["data", "metadata"], |
|
) |
|
|
|
return self._result_to_search_result(result) |
|
|
|
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None): |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
if not self.has_collection(collection_name): |
|
return None |
|
|
|
filter_string = " && ".join( |
|
[ |
|
f'metadata["{key}"] == {json.dumps(value)}' |
|
for key, value in filter.items() |
|
] |
|
) |
|
|
|
max_limit = 16383 |
|
all_results = [] |
|
|
|
if limit is None: |
|
limit = float("inf") |
|
|
|
|
|
offset = 0 |
|
remaining = limit |
|
|
|
try: |
|
|
|
while remaining > 0: |
|
print("remaining", remaining) |
|
current_fetch = min( |
|
max_limit, remaining |
|
) |
|
|
|
results = self.client.query( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
filter=filter_string, |
|
output_fields=["*"], |
|
limit=current_fetch, |
|
offset=offset, |
|
) |
|
|
|
if not results: |
|
break |
|
|
|
all_results.extend(results) |
|
results_count = len(results) |
|
remaining -= ( |
|
results_count |
|
) |
|
offset += results_count |
|
|
|
|
|
if results_count < current_fetch: |
|
break |
|
|
|
print(all_results) |
|
return self._result_to_get_result([all_results]) |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
def get(self, collection_name: str) -> Optional[GetResult]: |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
result = self.client.query( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
filter='id != ""', |
|
) |
|
return self._result_to_get_result([result]) |
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]): |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
if not self.client.has_collection( |
|
collection_name=f"{self.collection_prefix}_{collection_name}" |
|
): |
|
self._create_collection( |
|
collection_name=collection_name, dimension=len(items[0]["vector"]) |
|
) |
|
|
|
return self.client.insert( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
data=[ |
|
{ |
|
"id": item["id"], |
|
"vector": item["vector"], |
|
"data": {"text": item["text"]}, |
|
"metadata": item["metadata"], |
|
} |
|
for item in items |
|
], |
|
) |
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]): |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
if not self.client.has_collection( |
|
collection_name=f"{self.collection_prefix}_{collection_name}" |
|
): |
|
self._create_collection( |
|
collection_name=collection_name, dimension=len(items[0]["vector"]) |
|
) |
|
|
|
return self.client.upsert( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
data=[ |
|
{ |
|
"id": item["id"], |
|
"vector": item["vector"], |
|
"data": {"text": item["text"]}, |
|
"metadata": item["metadata"], |
|
} |
|
for item in items |
|
], |
|
) |
|
|
|
def delete( |
|
self, |
|
collection_name: str, |
|
ids: Optional[list[str]] = None, |
|
filter: Optional[dict] = None, |
|
): |
|
|
|
collection_name = collection_name.replace("-", "_") |
|
if ids: |
|
return self.client.delete( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
ids=ids, |
|
) |
|
elif filter: |
|
|
|
filter_string = " && ".join( |
|
[ |
|
f'metadata["{key}"] == {json.dumps(value)}' |
|
for key, value in filter.items() |
|
] |
|
) |
|
|
|
return self.client.delete( |
|
collection_name=f"{self.collection_prefix}_{collection_name}", |
|
filter=filter_string, |
|
) |
|
|
|
def reset(self): |
|
|
|
collection_names = self.client.list_collections() |
|
for collection_name in collection_names: |
|
if collection_name.startswith(self.collection_prefix): |
|
self.client.drop_collection(collection_name=collection_name) |
|
|