Spaces:
Sleeping
Sleeping
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = f"rdiazconcha/GenerAd-AI" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
def make_inference(product_name, product_description): | |
batch = tokenizer( | |
f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:", | |
return_tensors="pt", | |
) | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=50) | |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=2, label="Product Item"), | |
gr.inputs.Textbox(lines=5, label="Product Description"), | |
], | |
gr.outputs.Textbox(label="Ad"), | |
title="GenerAd-AI", | |
description="GenerAd-AI is a generative model that generates ads for products.", | |
).launch() | |