from crawl4ai.extraction_strategy import * from crawl4ai.crawler_strategy import * import asyncio from pydantic import BaseModel, Field url = r'https://openai.com/api/pricing/' class OpenAIModelFee(BaseModel): model_name: str = Field(..., description="Name of the OpenAI model.") input_fee: str = Field(..., description="Fee for input token for the OpenAI model.") output_fee: str = Field(..., description="Fee for output token for the OpenAI model.") from crawl4ai import AsyncWebCrawler async def main(): # Use AsyncWebCrawler async with AsyncWebCrawler() as crawler: result = await crawler.arun( url=url, word_count_threshold=1, extraction_strategy= LLMExtractionStrategy( # provider= "openai/gpt-4o", api_token = os.getenv('OPENAI_API_KEY'), provider= "groq/llama-3.1-70b-versatile", api_token = os.getenv('GROQ_API_KEY'), schema=OpenAIModelFee.model_json_schema(), extraction_type="schema", instruction="From the crawled content, extract all mentioned model names along with their " \ "fees for input and output tokens. Make sure not to miss anything in the entire content. " \ 'One extracted model JSON format should look like this: ' \ '{ "model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens" }' ), ) print("Success:", result.success) model_fees = json.loads(result.extracted_content) print(len(model_fees)) with open(".data/data.json", "w", encoding="utf-8") as f: f.write(result.extracted_content) asyncio.run(main())