Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import asyncio | |
import concurrent.futures | |
import os | |
from threading import Thread | |
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union | |
import torch | |
from transformers import GenerationConfig, TextIteratorStreamer | |
from typing_extensions import override | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras.constants import IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER | |
from ..extras.logging import get_logger | |
from ..extras.misc import get_logits_processor | |
from ..model import load_model, load_tokenizer | |
from .base_engine import BaseEngine, Response | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin | |
from trl import PreTrainedModelWrapper | |
from ..data import Template | |
from ..data.mm_plugin import ImageInput, VideoInput | |
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
logger = get_logger(__name__) | |
class HuggingfaceEngine(BaseEngine): | |
def __init__( | |
self, | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
) -> None: | |
self.can_generate = finetuning_args.stage == "sft" | |
tokenizer_module = load_tokenizer(model_args) | |
self.tokenizer = tokenizer_module["tokenizer"] | |
self.processor = tokenizer_module["processor"] | |
self.tokenizer.padding_side = "left" if self.can_generate else "right" | |
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args) | |
self.model = load_model( | |
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate) | |
) # must after fixing tokenizer to resize vocab | |
self.generating_args = generating_args.to_dict() | |
try: | |
asyncio.get_event_loop() | |
except RuntimeError: | |
logger.warning("There is no current event loop, creating a new one.") | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
self.semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", "1"))) | |
def _process_args( | |
model: "PreTrainedModel", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
template: "Template", | |
generating_args: Dict[str, Any], | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["ImageInput"] = None, | |
video: Optional["VideoInput"] = None, | |
input_kwargs: Optional[Dict[str, Any]] = {}, | |
) -> Tuple[Dict[str, Any], int]: | |
mm_input_dict = {"images": [], "videos": [], "imglens": [0], "vidlens": [0]} | |
if image is not None: | |
mm_input_dict.update({"images": [image], "imglens": [1]}) | |
if IMAGE_PLACEHOLDER not in messages[0]["content"]: | |
messages[0]["content"] = IMAGE_PLACEHOLDER + messages[0]["content"] | |
if video is not None: | |
mm_input_dict.update({"videos": [video], "vidlens": [1]}) | |
if VIDEO_PLACEHOLDER not in messages[0]["content"]: | |
messages[0]["content"] = VIDEO_PLACEHOLDER + messages[0]["content"] | |
messages = template.mm_plugin.process_messages( | |
messages, mm_input_dict["images"], mm_input_dict["videos"], processor | |
) | |
paired_messages = messages + [{"role": "assistant", "content": ""}] | |
system = system or generating_args["default_system"] | |
prompt_ids, _ = template.encode_oneturn(tokenizer, paired_messages, system, tools) | |
prompt_ids, _ = template.mm_plugin.process_token_ids( | |
prompt_ids, None, mm_input_dict["images"], mm_input_dict["videos"], tokenizer, processor | |
) | |
prompt_length = len(prompt_ids) | |
inputs = torch.tensor([prompt_ids], device=model.device) | |
attention_mask = torch.ones_like(inputs, dtype=torch.bool) | |
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None) | |
temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None) | |
max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None) | |
if stop is not None: | |
logger.warning("Stop parameter is not supported by the huggingface engine yet.") | |
generating_args = generating_args.copy() | |
generating_args.update( | |
dict( | |
do_sample=do_sample if do_sample is not None else generating_args["do_sample"], | |
temperature=temperature if temperature is not None else generating_args["temperature"], | |
top_p=top_p if top_p is not None else generating_args["top_p"], | |
top_k=top_k if top_k is not None else generating_args["top_k"], | |
num_return_sequences=num_return_sequences, | |
repetition_penalty=repetition_penalty | |
if repetition_penalty is not None | |
else generating_args["repetition_penalty"], | |
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"], | |
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
) | |
if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0 | |
generating_args["do_sample"] = True | |
generating_args["temperature"] = generating_args["temperature"] or 1.0 | |
if not generating_args["temperature"]: | |
generating_args["do_sample"] = False | |
if not generating_args["do_sample"]: | |
generating_args.pop("temperature", None) | |
generating_args.pop("top_p", None) | |
if max_length: | |
generating_args.pop("max_new_tokens", None) | |
generating_args["max_length"] = max_length | |
if max_new_tokens: | |
generating_args.pop("max_length", None) | |
generating_args["max_new_tokens"] = max_new_tokens | |
gen_kwargs = dict( | |
inputs=inputs, | |
attention_mask=attention_mask, | |
generation_config=GenerationConfig(**generating_args), | |
logits_processor=get_logits_processor(), | |
) | |
mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, seqlens=[prompt_length], processor=processor) | |
for key, value in mm_inputs.items(): | |
value = value if isinstance(value, torch.Tensor) else torch.tensor(value) | |
gen_kwargs[key] = value.to(model.device) | |
return gen_kwargs, prompt_length | |
def _chat( | |
model: "PreTrainedModel", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
template: "Template", | |
generating_args: Dict[str, Any], | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["ImageInput"] = None, | |
video: Optional["VideoInput"] = None, | |
input_kwargs: Optional[Dict[str, Any]] = {}, | |
) -> List["Response"]: | |
gen_kwargs, prompt_length = HuggingfaceEngine._process_args( | |
model, tokenizer, processor, template, generating_args, messages, system, tools, image, video, input_kwargs | |
) | |
generate_output = model.generate(**gen_kwargs) | |
response_ids = generate_output[:, prompt_length:] | |
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
results = [] | |
for i in range(len(response)): | |
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero() | |
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i]) | |
results.append( | |
Response( | |
response_text=response[i], | |
response_length=response_length, | |
prompt_length=prompt_length, | |
finish_reason="stop" if len(eos_index) else "length", | |
) | |
) | |
return results | |
def _stream_chat( | |
model: "PreTrainedModel", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
template: "Template", | |
generating_args: Dict[str, Any], | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["ImageInput"] = None, | |
video: Optional["VideoInput"] = None, | |
input_kwargs: Optional[Dict[str, Any]] = {}, | |
) -> Callable[[], str]: | |
gen_kwargs, _ = HuggingfaceEngine._process_args( | |
model, tokenizer, processor, template, generating_args, messages, system, tools, image, video, input_kwargs | |
) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs["streamer"] = streamer | |
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True) | |
thread.start() | |
def stream(): | |
try: | |
return streamer.__next__() | |
except StopIteration: | |
raise StopAsyncIteration() | |
return stream | |
def _get_scores( | |
model: "PreTrainedModelWrapper", | |
tokenizer: "PreTrainedTokenizer", | |
batch_input: List[str], | |
input_kwargs: Optional[Dict[str, Any]] = {}, | |
) -> List[float]: | |
max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
device = getattr(model.pretrained_model, "device", "cuda") | |
inputs: Dict[str, "torch.Tensor"] = tokenizer( | |
batch_input, | |
padding=True, | |
truncation=True, | |
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024), | |
return_tensors="pt", | |
add_special_tokens=False, | |
).to(device) | |
values: "torch.Tensor" = model(**inputs, return_dict=True, use_cache=False)[-1] | |
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1)) | |
return scores | |
async def chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["ImageInput"] = None, | |
video: Optional["VideoInput"] = None, | |
**input_kwargs, | |
) -> List["Response"]: | |
if not self.can_generate: | |
raise ValueError("The current model does not support `chat`.") | |
loop = asyncio.get_running_loop() | |
input_args = ( | |
self.model, | |
self.tokenizer, | |
self.processor, | |
self.template, | |
self.generating_args, | |
messages, | |
system, | |
tools, | |
image, | |
video, | |
input_kwargs, | |
) | |
async with self.semaphore: | |
with concurrent.futures.ThreadPoolExecutor() as pool: | |
return await loop.run_in_executor(pool, self._chat, *input_args) | |
async def stream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["ImageInput"] = None, | |
video: Optional["VideoInput"] = None, | |
**input_kwargs, | |
) -> AsyncGenerator[str, None]: | |
if not self.can_generate: | |
raise ValueError("The current model does not support `stream_chat`.") | |
loop = asyncio.get_running_loop() | |
input_args = ( | |
self.model, | |
self.tokenizer, | |
self.processor, | |
self.template, | |
self.generating_args, | |
messages, | |
system, | |
tools, | |
image, | |
video, | |
input_kwargs, | |
) | |
async with self.semaphore: | |
with concurrent.futures.ThreadPoolExecutor() as pool: | |
stream = self._stream_chat(*input_args) | |
while True: | |
try: | |
yield await loop.run_in_executor(pool, stream) | |
except StopAsyncIteration: | |
break | |
async def get_scores( | |
self, | |
batch_input: List[str], | |
**input_kwargs, | |
) -> List[float]: | |
if self.can_generate: | |
raise ValueError("Cannot get scores using an auto-regressive model.") | |
loop = asyncio.get_running_loop() | |
input_args = (self.model, self.tokenizer, batch_input, input_kwargs) | |
async with self.semaphore: | |
with concurrent.futures.ThreadPoolExecutor() as pool: | |
return await loop.run_in_executor(pool, self._get_scores, *input_args) | |