File size: 2,954 Bytes
ffa45e8
 
 
 
 
 
 
9c5c95e
ffa45e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5c95e
ffa45e8
 
 
 
9c5c95e
ffa45e8
 
 
 
 
 
9c5c95e
 
 
 
 
 
 
 
 
 
ffa45e8
 
9c5c95e
 
ffa45e8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from __future__ import annotations

import gc
import pathlib

import gradio as gr
import torch
from PIL import Image, ImageFilter
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from huggingface_hub import ModelCard


class InferencePipeline:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token
        self.pipe = None
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model_id = None

    def clear(self) -> None:
        self.model_id = None
        del self.pipe
        self.pipe = None
        torch.cuda.empty_cache()
        gc.collect()

    @staticmethod
    def check_if_model_is_local(model_id: str) -> bool:
        return pathlib.Path(model_id).exists()

    @staticmethod
    def get_model_card(model_id: str,
                       hf_token: str | None = None) -> ModelCard:
        if InferencePipeline.check_if_model_is_local(model_id):
            card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
        else:
            card_path = model_id
        return ModelCard.load(card_path, token=hf_token)

    def load_pipe(self, model_id: str) -> None:
        if model_id == self.model_id:
            return
        
        if self.device.type == 'cpu':
            pipe = DiffusionPipeline.from_pretrained(
                model_id, use_auth_token=self.hf_token)
        else:
            pipe = DiffusionPipeline.from_pretrained(
                model_id, torch_dtype=torch.float16,
                use_auth_token=self.hf_token)
            pipe = pipe.to(self.device)
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            pipe.scheduler.config)
        self.pipe = pipe
        
        pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
        self.model_id = model_id  # type: ignore

    def run(
        self,
        model_id: str,
        seed: int,
        target_image: str,
        target_mask: str,
        n_steps: int,
        guidance_scale: float,
    ) -> Image.Image:
        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')

        self.load_pipe(model_id)

        generator = torch.Generator(device=self.device).manual_seed(seed)

        image, mask_image = Image.open(target_image), Image.open(target_mask)
        image, mask_image = image.convert("RGB"), mask_image.convert("L")

        erode_kernel = ImageFilter.MaxFilter(3)
        mask_image = mask_image.filter(erode_kernel)
             
        blur_kernel = ImageFilter.BoxBlur(1)
        mask_image = mask_image.filter(blur_kernel)
        
        out = self.pipe(
            "a photo of sks",
            image=image,
            mask_image=mask_image,
            num_inference_steps=n_steps,
            guidance_scale=guidance_scale,
            generator=generator,
        )  # type: ignore
        return out.images[0]