Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import gc | |
import pathlib | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageFilter | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from huggingface_hub import ModelCard | |
class InferencePipeline: | |
def __init__(self, hf_token: str | None = None): | |
self.hf_token = hf_token | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.model_id = None | |
def clear(self) -> None: | |
self.model_id = None | |
del self.pipe | |
self.pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def check_if_model_is_local(model_id: str) -> bool: | |
return pathlib.Path(model_id).exists() | |
def get_model_card(model_id: str, | |
hf_token: str | None = None) -> ModelCard: | |
if InferencePipeline.check_if_model_is_local(model_id): | |
card_path = (pathlib.Path(model_id) / 'README.md').as_posix() | |
else: | |
card_path = model_id | |
return ModelCard.load(card_path, token=hf_token) | |
def load_pipe(self, model_id: str) -> None: | |
if model_id == self.model_id: | |
return | |
if self.device.type == 'cpu': | |
pipe = DiffusionPipeline.from_pretrained( | |
model_id, use_auth_token=self.hf_token) | |
else: | |
pipe = DiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=torch.float16, | |
use_auth_token=self.hf_token) | |
pipe = pipe.to(self.device) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config( | |
pipe.scheduler.config) | |
self.pipe = pipe | |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
self.model_id = model_id # type: ignore | |
def run( | |
self, | |
model_id: str, | |
seed: int, | |
target_image: str, | |
target_mask: str, | |
n_steps: int, | |
guidance_scale: float, | |
) -> Image.Image: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
self.load_pipe(model_id) | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
image, mask_image = Image.open(target_image), Image.open(target_mask) | |
image, mask_image = image.convert("RGB"), mask_image.convert("L") | |
erode_kernel = ImageFilter.MaxFilter(3) | |
mask_image = mask_image.filter(erode_kernel) | |
blur_kernel = ImageFilter.BoxBlur(1) | |
mask_image = mask_image.filter(blur_kernel) | |
out = self.pipe( | |
"a photo of sks", | |
image=image, | |
mask_image=mask_image, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
) # type: ignore | |
return out.images[0] | |