RealFill-Training-UI / train_realfill.py
thuanz123's picture
Update train_realfill.py
12b26b5
import random
import argparse
import copy
import itertools
import logging
import math
import os
import shutil
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
import torchvision.transforms.v2 as transforms_v2
from tqdm.auto import tqdm
from transformers import AutoTokenizer, CLIPTextModel
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionInpaintPipeline,
DPMSolverMultistepScheduler,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from peft import PeftModel, LoraConfig, get_peft_model
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.20.1")
logger = get_logger(__name__)
def make_mask(images, resolution, times=30):
mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times)
min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution
max_size = min(max_size, resolution - margin * 2)
for _ in range(times):
width = np.random.randint(int(min_size), int(max_size))
height = np.random.randint(int(min_size), int(max_size))
x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1)
y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1)
mask[:, y_start:y_start + height, x_start:x_start + width] = 0
mask = 1 - mask if random.random() < 0.5 else mask
return mask
def log_validation(
text_encoder,
tokenizer,
unet,
args,
accelerator,
weight_dtype,
epoch,
):
logger.info(
f"Running validation... \nGenerating {args.num_validation_images} images"
)
# create pipeline (note: unet and vae are loaded again in float32)
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
args.pretrained_model_name_or_path,
tokenizer=tokenizer,
revision=args.revision,
)
# set `keep_fp32_wrapper` to True because we do not want to remove
# mixed precision hooks while we are still training
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
target_dir = Path(args.train_data_dir) / "target"
target_image, target_mask = target_dir / "target.jpg", target_dir / "mask.jpg"
image, mask_image = Image.open(target_image), Image.open(target_mask)
if image.mode != "RGB":
image = image.convert("RGB")
images = []
for _ in range(args.num_validation_images):
image = pipeline(
prompt="a photo of sks", image=image, mask_image=mask_image,
num_inference_steps=25, guidance_scale=5, generator=generator
).images[0]
images.append(image)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(f"validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
f"validation": [
wandb.Image(image, caption=str(i)) for i, image in enumerate(images)
]
}
)
del pipeline
torch.cuda.empty_cache()
return images
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of images.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=4,
help="Number of images that should be generated during validation with `validation_conditioning`.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run realfill validation every X steps. RealFill validation consists of running the conditioning"
" `args.validation_conditioning` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="realfill-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--unet_learning_rate",
type=float,
default=2e-4,
help="Learning rate to use for unet.",
)
parser.add_argument(
"--text_encoder_learning_rate",
type=float,
default=4e-5,
help="Learning rate to use for text encoder.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--wandb_key",
type=str,
default=None,
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "),
)
parser.add_argument(
"--wandb_project_name",
type=str,
default=None,
help=("If report to option is set to wandb, project name in wandb for log tracking "),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument(
"--lora_rank",
type=int,
default=16,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--lora_alpha",
type=int,
default=27,
help=("The alpha constant of the LoRA update matrices."),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout rate of the LoRA update matrices.",
)
parser.add_argument(
"--lora_bias",
type=str,
default="none",
help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
class RealFillDataset(Dataset):
"""
A dataset to prepare the training and conditioning images and
the masks with the dummy prompt for fine-tuning the model.
It pre-processes the images, masks and tokenizes the prompts.
"""
def __init__(
self,
train_data_root,
tokenizer,
size=512,
):
self.size = size
self.tokenizer = tokenizer
self.ref_data_root = Path(train_data_root) / "ref"
self.target_image = Path(train_data_root) / "target" / "target.jpg"
self.target_mask = Path(train_data_root) / "target" / "mask.jpg"
if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()):
raise ValueError("Train images root doesn't exists.")
self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image]
self.num_train_images = len(self.train_images_path)
self.train_prompt = "a photo of sks"
self.transform = transforms_v2.Compose(
[
transforms_v2.RandomResize(size, int(1.125 * size)),
transforms_v2.RandomCrop(size),
transforms_v2.ToImageTensor(),
transforms_v2.ConvertImageDtype(),
transforms_v2.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self.num_train_images
def __getitem__(self, index):
example = {}
image = Image.open(self.train_images_path[index])
image = exif_transpose(image)
if not image.mode == "RGB":
image = image.convert("RGB")
if index < len(self) - 1:
weighting = Image.new("L", image.size)
else:
weighting = Image.open(self.target_mask)
weighting = exif_transpose(weighting)
image, weighting = self.transform(image, weighting)
example["images"], example["weightings"] = image, weighting < 0
if random.random() < 0.1:
example["masks"] = torch.ones_like(example["images"][0:1, :, :])
else:
example["masks"] = make_mask(example["images"], self.size)
example["conditioning_images"] = example["images"] * (example["masks"] < 0.5)
train_prompt = "" if random.random() < 0.1 else self.train_prompt
example["prompt_ids"] = self.tokenizer(
train_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
return example
def collate_fn(examples):
input_ids = [example["prompt_ids"] for example in examples]
images = [example["images"] for example in examples]
masks = [example["masks"] for example in examples]
weightings = [example["weightings"] for example in examples]
conditioning_images = [example["conditioning_images"] for example in examples]
images = torch.stack(images)
images = images.to(memory_format=torch.contiguous_format).float()
masks = torch.stack(masks)
masks = masks.to(memory_format=torch.contiguous_format).float()
weightings = torch.stack(weightings)
weightings = weightings.to(memory_format=torch.contiguous_format).float()
conditioning_images = torch.stack(conditioning_images)
conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float()
input_ids = torch.cat(input_ids, dim=0)
batch = {
"input_ids": input_ids,
"images": images,
"masks": masks,
"weightings": weightings,
"conditioning_images": conditioning_images,
}
return batch
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
)
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
wandb.login(key=args.wandb_key)
wandb.init(project=args.wandb_project_name)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=["to_k", "to_q", "to_v", "key", "query", "value"],
lora_dropout=args.lora_dropout,
bias=args.lora_bias,
)
unet = get_peft_model(unet, config)
config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=["k_proj", "q_proj", "v_proj"],
lora_dropout=args.lora_dropout,
bias=args.lora_bias,
)
text_encoder = get_peft_model(text_encoder, config)
vae.requires_grad_(False)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for model in models:
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder"
model.save_pretrained(os.path.join(output_dir, sub_dir))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder"
model_cls = UNet2DConditionModel if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else CLIPTextModel
load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir)
load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.unet_learning_rate = (
args.unet_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
args.text_encoder_learning_rate = (
args.text_encoder_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation
optimizer = optimizer_class(
[
{"params": unet.parameters(), "lr": args.unet_learning_rate},
{"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate}
],
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Dataset and DataLoaders creation:
train_dataset = RealFillDataset(
train_data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=1,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
unet, text_encoder, optimizer, train_dataloader = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader
)
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = vars(copy.deepcopy(args))
accelerator.init_trackers("realfill", config=tracker_config)
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the mos recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
for epoch in range(first_epoch, args.num_train_epochs):
unet.train()
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet, text_encoder):
# Convert images to latent space
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Convert masked images to latent space
conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample()
conditionings = conditionings * 0.18215
# Downsample mask and weighting so that they match with the latents
masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:]
masks = F.interpolate(masks, size=size)
weightings = batch["weightings"].to(dtype=weight_dtype)
weightings = F.interpolate(weightings, size=size)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Concatenate noisy latents, masks and conditionings to get inputs to unet
inputs = torch.cat([noisy_latents, masks, conditionings], dim=1)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(inputs, timesteps, encoder_hidden_states).sample
# Compute the diffusion loss
assert noise_scheduler.config.prediction_type == "epsilon"
loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean()
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = itertools.chain(
unet.parameters(), text_encoder.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
if args.report_to == "wandb":
accelerator.print(progress_bar)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
log_validation(
text_encoder,
tokenizer,
unet,
args,
accelerator,
weight_dtype,
global_step,
)
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# Save the lora layers
accelerator.wait_for_everyone()
if accelerator.is_main_process:
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet.merge_and_unload(), keep_fp32_wrapper=True),
text_encoder=accelerator.unwrap_model(text_encoder.merge_and_unload(), keep_fp32_wrapper=True),
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
# Final inference
images = log_validation(
text_encoder,
tokenizer,
unet,
args,
accelerator,
weight_dtype,
global_step,
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)