Spaces:
Runtime error
Runtime error
import random | |
import argparse | |
import copy | |
import itertools | |
import logging | |
import math | |
import os | |
import shutil | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import set_seed | |
from packaging import version | |
from PIL import Image | |
from PIL.ImageOps import exif_transpose | |
from torch.utils.data import Dataset | |
import torchvision.transforms.v2 as transforms_v2 | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, CLIPTextModel | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
StableDiffusionInpaintPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
from peft import PeftModel, LoraConfig, get_peft_model | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.20.1") | |
logger = get_logger(__name__) | |
def make_mask(images, resolution, times=30): | |
mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times) | |
min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution | |
max_size = min(max_size, resolution - margin * 2) | |
for _ in range(times): | |
width = np.random.randint(int(min_size), int(max_size)) | |
height = np.random.randint(int(min_size), int(max_size)) | |
x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1) | |
y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1) | |
mask[:, y_start:y_start + height, x_start:x_start + width] = 0 | |
mask = 1 - mask if random.random() < 0.5 else mask | |
return mask | |
def log_validation( | |
text_encoder, | |
tokenizer, | |
unet, | |
args, | |
accelerator, | |
weight_dtype, | |
epoch, | |
): | |
logger.info( | |
f"Running validation... \nGenerating {args.num_validation_images} images" | |
) | |
# create pipeline (note: unet and vae are loaded again in float32) | |
pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
tokenizer=tokenizer, | |
revision=args.revision, | |
) | |
# set `keep_fp32_wrapper` to True because we do not want to remove | |
# mixed precision hooks while we are still training | |
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | |
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
target_dir = Path(args.train_data_dir) / "target" | |
target_image, target_mask = target_dir / "target.jpg", target_dir / "mask.jpg" | |
image, mask_image = Image.open(target_image), Image.open(target_mask) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
images = [] | |
for _ in range(args.num_validation_images): | |
image = pipeline( | |
prompt="a photo of sks", image=image, mask_image=mask_image, | |
num_inference_steps=25, guidance_scale=5, generator=generator | |
).images[0] | |
images.append(image) | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images(f"validation", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
f"validation": [ | |
wandb.Image(image, caption=str(i)) for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
torch.cuda.empty_cache() | |
return images | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
required=True, | |
help="A folder containing the training data of images.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=4, | |
help="Number of images that should be generated during validation with `validation_conditioning`.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run realfill validation every X steps. RealFill validation consists of running the conditioning" | |
" `args.validation_conditioning` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="realfill-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--unet_learning_rate", | |
type=float, | |
default=2e-4, | |
help="Learning rate to use for unet.", | |
) | |
parser.add_argument( | |
"--text_encoder_learning_rate", | |
type=float, | |
default=4e-5, | |
help="Learning rate to use for text encoder.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--wandb_key", | |
type=str, | |
default=None, | |
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), | |
) | |
parser.add_argument( | |
"--wandb_project_name", | |
type=str, | |
default=None, | |
help=("If report to option is set to wandb, project name in wandb for log tracking "), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--set_grads_to_none", | |
action="store_true", | |
help=( | |
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
" behaviors, so disable this argument if it causes any problems. More info:" | |
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
), | |
) | |
parser.add_argument( | |
"--lora_rank", | |
type=int, | |
default=16, | |
help=("The dimension of the LoRA update matrices."), | |
) | |
parser.add_argument( | |
"--lora_alpha", | |
type=int, | |
default=27, | |
help=("The alpha constant of the LoRA update matrices."), | |
) | |
parser.add_argument( | |
"--lora_dropout", | |
type=float, | |
default=0.0, | |
help="The dropout rate of the LoRA update matrices.", | |
) | |
parser.add_argument( | |
"--lora_bias", | |
type=str, | |
default="none", | |
help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.", | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
return args | |
class RealFillDataset(Dataset): | |
""" | |
A dataset to prepare the training and conditioning images and | |
the masks with the dummy prompt for fine-tuning the model. | |
It pre-processes the images, masks and tokenizes the prompts. | |
""" | |
def __init__( | |
self, | |
train_data_root, | |
tokenizer, | |
size=512, | |
): | |
self.size = size | |
self.tokenizer = tokenizer | |
self.ref_data_root = Path(train_data_root) / "ref" | |
self.target_image = Path(train_data_root) / "target" / "target.jpg" | |
self.target_mask = Path(train_data_root) / "target" / "mask.jpg" | |
if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()): | |
raise ValueError("Train images root doesn't exists.") | |
self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image] | |
self.num_train_images = len(self.train_images_path) | |
self.train_prompt = "a photo of sks" | |
self.transform = transforms_v2.Compose( | |
[ | |
transforms_v2.RandomResize(size, int(1.125 * size)), | |
transforms_v2.RandomCrop(size), | |
transforms_v2.ToImageTensor(), | |
transforms_v2.ConvertImageDtype(), | |
transforms_v2.Normalize([0.5], [0.5]), | |
] | |
) | |
def __len__(self): | |
return self.num_train_images | |
def __getitem__(self, index): | |
example = {} | |
image = Image.open(self.train_images_path[index]) | |
image = exif_transpose(image) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
if index < len(self) - 1: | |
weighting = Image.new("L", image.size) | |
else: | |
weighting = Image.open(self.target_mask) | |
weighting = exif_transpose(weighting) | |
image, weighting = self.transform(image, weighting) | |
example["images"], example["weightings"] = image, weighting < 0 | |
if random.random() < 0.1: | |
example["masks"] = torch.ones_like(example["images"][0:1, :, :]) | |
else: | |
example["masks"] = make_mask(example["images"], self.size) | |
example["conditioning_images"] = example["images"] * (example["masks"] < 0.5) | |
train_prompt = "" if random.random() < 0.1 else self.train_prompt | |
example["prompt_ids"] = self.tokenizer( | |
train_prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
return example | |
def collate_fn(examples): | |
input_ids = [example["prompt_ids"] for example in examples] | |
images = [example["images"] for example in examples] | |
masks = [example["masks"] for example in examples] | |
weightings = [example["weightings"] for example in examples] | |
conditioning_images = [example["conditioning_images"] for example in examples] | |
images = torch.stack(images) | |
images = images.to(memory_format=torch.contiguous_format).float() | |
masks = torch.stack(masks) | |
masks = masks.to(memory_format=torch.contiguous_format).float() | |
weightings = torch.stack(weightings) | |
weightings = weightings.to(memory_format=torch.contiguous_format).float() | |
conditioning_images = torch.stack(conditioning_images) | |
conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float() | |
input_ids = torch.cat(input_ids, dim=0) | |
batch = { | |
"input_ids": input_ids, | |
"images": images, | |
"masks": masks, | |
"weightings": weightings, | |
"conditioning_images": conditioning_images, | |
} | |
return batch | |
def main(args): | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_dir=logging_dir, | |
) | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
import wandb | |
wandb.login(key=args.wandb_key) | |
wandb.init(project=args.wandb_project_name) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Load the tokenizer | |
if args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
use_fast=False, | |
) | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder = CLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
) | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
) | |
config = LoraConfig( | |
r=args.lora_rank, | |
lora_alpha=args.lora_alpha, | |
target_modules=["to_k", "to_q", "to_v", "key", "query", "value"], | |
lora_dropout=args.lora_dropout, | |
bias=args.lora_bias, | |
) | |
unet = get_peft_model(unet, config) | |
config = LoraConfig( | |
r=args.lora_rank, | |
lora_alpha=args.lora_alpha, | |
target_modules=["k_proj", "q_proj", "v_proj"], | |
lora_dropout=args.lora_dropout, | |
bias=args.lora_bias, | |
) | |
text_encoder = get_peft_model(text_encoder, config) | |
vae.requires_grad_(False) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warn( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
text_encoder.gradient_checkpointing_enable() | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
for model in models: | |
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder" | |
model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
while len(models) > 0: | |
# pop models so that they are not loaded again | |
model = models.pop() | |
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder" | |
model_cls = UNet2DConditionModel if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else CLIPTextModel | |
load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir) | |
load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.unet_learning_rate = ( | |
args.unet_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
args.text_encoder_learning_rate = ( | |
args.text_encoder_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
# Optimizer creation | |
optimizer = optimizer_class( | |
[ | |
{"params": unet.parameters(), "lr": args.unet_learning_rate}, | |
{"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate} | |
], | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Dataset and DataLoaders creation: | |
train_dataset = RealFillDataset( | |
train_data_root=args.train_data_dir, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=collate_fn, | |
num_workers=1, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
unet, text_encoder, optimizer, train_dataloader = accelerator.prepare( | |
unet, text_encoder, optimizer, train_dataloader | |
) | |
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move vae to device and cast to weight_dtype | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = vars(copy.deepcopy(args)) | |
accelerator.init_trackers("realfill", config=tracker_config) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the mos recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
for epoch in range(first_epoch, args.num_train_epochs): | |
unet.train() | |
text_encoder.train() | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(unet, text_encoder): | |
# Convert images to latent space | |
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() | |
latents = latents * 0.18215 | |
# Convert masked images to latent space | |
conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample() | |
conditionings = conditionings * 0.18215 | |
# Downsample mask and weighting so that they match with the latents | |
masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:] | |
masks = F.interpolate(masks, size=size) | |
weightings = batch["weightings"].to(dtype=weight_dtype) | |
weightings = F.interpolate(weightings, size=size) | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint( | |
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device | |
) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Concatenate noisy latents, masks and conditionings to get inputs to unet | |
inputs = torch.cat([noisy_latents, masks, conditionings], dim=1) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
# Predict the noise residual | |
model_pred = unet(inputs, timesteps, encoder_hidden_states).sample | |
# Compute the diffusion loss | |
assert noise_scheduler.config.prediction_type == "epsilon" | |
loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean() | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = itertools.chain( | |
unet.parameters(), text_encoder.parameters() | |
) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
if args.report_to == "wandb": | |
accelerator.print(progress_bar) | |
global_step += 1 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if global_step % args.validation_steps == 0: | |
log_validation( | |
text_encoder, | |
tokenizer, | |
unet, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
) | |
logs = {"loss": loss.detach().item()} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
# Save the lora layers | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet.merge_and_unload(), keep_fp32_wrapper=True), | |
text_encoder=accelerator.unwrap_model(text_encoder.merge_and_unload(), keep_fp32_wrapper=True), | |
revision=args.revision, | |
) | |
pipeline.save_pretrained(args.output_dir) | |
# Final inference | |
images = log_validation( | |
text_encoder, | |
tokenizer, | |
unet, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |