File size: 1,349 Bytes
d0d84fe 09ae4e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# KAGGLE SPECIFIC: This script is used to make training compatible with Kaggle's notebook environment.
import torch
import os
def load_and_save_checkpoint(input_filename, output_filename, device):
if os.path.isfile(input_filename):
print(f"Loading checkpoint '{input_filename}'")
checkpoint = torch.load(input_filename, map_location=device)
# Extract only the necessary state
save_state = {
'epoch': checkpoint['epoch'],
'generator_state_dict': checkpoint['generator_state_dict'],
'discriminator_state_dict': checkpoint['discriminator_state_dict'],
'optimizerG_state_dict': checkpoint['optimizerG_state_dict'],
'optimizerD_state_dict': checkpoint['optimizerD_state_dict'],
}
# Save the checkpoint
torch.save(save_state, output_filename)
print(f"Saved checkpoint to '{output_filename}'")
else:
print(f"No checkpoint found at '{input_filename}'")
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
input_checkpoint = "checkpoints/latest_checkpoint.pth.tar"
output_checkpoint = "checkpoints/converted_checkpoint.pth.tar"
load_and_save_checkpoint(input_checkpoint, output_checkpoint, device) |