File size: 9,389 Bytes
02f3f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import mlflow
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
from skimage.color import lab2rgb, rgb2lab
import argparse
from itertools import islice
from PIL import Image
import torchvision.transforms as transforms

from data_ingestion import ColorizeIterableDataset, create_dataloaders
from model import Generator, Discriminator, init_weights

EXPERIMENT_NAME = "Colorizer_Experiment"

def setup_mlflow():
    experiment = mlflow.get_experiment_by_name(EXPERIMENT_NAME)
    if experiment is None:
        experiment_id = mlflow.create_experiment(EXPERIMENT_NAME)
    else:
        experiment_id = experiment.experiment_id
    return experiment_id

def lab_to_rgb(L, ab):
    """Convert L and ab channels to RGB image"""
    L = (L + 1.) * 50.
    ab = ab * 128.
    Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
    rgb_imgs = []
    for img in Lab:
        img_rgb = lab2rgb(img)
        rgb_imgs.append(img_rgb)
    return np.stack(rgb_imgs, axis=0)

def preprocess_image(image_path):
    img = Image.open(image_path).convert('RGB')
    img = img.resize((256, 256))  # Resize to a consistent size
    img_lab = rgb2lab(img)
    img_lab = (img_lab + [0, 128, 128]) / [100, 255, 255]  # Normalize LAB values
    return img_lab[:,:,0], img_lab[:,:,1:]

def visualize_results(epoch, generator, train_loader, device):
    generator.eval()
    with torch.no_grad():
        for inputs, real_AB in train_loader:
            inputs, real_AB = inputs.to(device), real_AB.to(device)
            fake_AB = generator(inputs)
            
            fake_rgb = lab_to_rgb(inputs.cpu(), fake_AB.cpu())
            real_rgb = lab_to_rgb(inputs.cpu(), real_AB.cpu())
            
            img_grid = make_grid(torch.from_numpy(np.concatenate([real_rgb, fake_rgb], axis=3)).permute(0, 3, 1, 2), normalize=True, nrow=4)
            
            plt.figure(figsize=(15, 15))
            plt.imshow(img_grid.permute(1, 2, 0).cpu())
            plt.axis('off')
            plt.title(f'Epoch {epoch}')
            plt.savefig(f'results/epoch_{epoch}.png')
            mlflow.log_artifact(f'results/epoch_{epoch}.png')
            plt.close()
            break  # Only visualize one batch
    generator.train()

def save_checkpoint(state, filename="checkpoint.pth.tar"):
    torch.save(state, filename)
    mlflow.log_artifact(filename)

def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD):
    if os.path.isfile(filename):
        print(f"Loading checkpoint '{filename}'")
        checkpoint = torch.load(filename)
        start_epoch = checkpoint['epoch'] + 1
        generator.load_state_dict(checkpoint['generator_state_dict'])
        discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
        optimizerG.load_state_dict(checkpoint['optimizerG_state_dict'])
        optimizerD.load_state_dict(checkpoint['optimizerD_state_dict'])
        print(f"Loaded checkpoint '{filename}' (epoch {checkpoint['epoch']})")
        return start_epoch
    else:
        print(f"No checkpoint found at '{filename}'")
        return 0

def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
    criterion = nn.BCEWithLogitsLoss()
    l1_loss = nn.L1Loss()

    optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
    optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))

    checkpoint_dir = "checkpoints"
    os.makedirs(checkpoint_dir, exist_ok=True)
    os.makedirs("results", exist_ok=True)

    checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
    start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD)

    experiment_id = setup_mlflow()
    with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
        try:
            for epoch in range(start_epoch, num_epochs):
                generator.train()
                discriminator.train()

                # Use a fixed number of iterations per epoch
                num_iterations = 1000
                pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
                
                for i, (real_L, real_AB) in pbar:
                    real_L, real_AB = real_L.to(device), real_AB.to(device)
                    batch_size = real_L.size(0)

                    # Train Discriminator
                    optimizerD.zero_grad()

                    fake_AB = generator(real_L)
                    fake_LAB = torch.cat([real_L, fake_AB], dim=1)
                    real_LAB = torch.cat([real_L, real_AB], dim=1)

                    pred_fake = discriminator(fake_LAB.detach())
                    loss_D_fake = criterion(pred_fake, torch.zeros_like(pred_fake))

                    pred_real = discriminator(real_LAB)
                    loss_D_real = criterion(pred_real, torch.ones_like(pred_real))

                    loss_D = (loss_D_fake + loss_D_real) * 0.5
                    loss_D.backward()
                    optimizerD.step()

                    # Train Generator
                    optimizerG.zero_grad()

                    fake_AB = generator(real_L)
                    fake_LAB = torch.cat([real_L, fake_AB], dim=1)
                    pred_fake = discriminator(fake_LAB)

                    loss_G_GAN = criterion(pred_fake, torch.ones_like(pred_fake))
                    loss_G_L1 = l1_loss(fake_AB, real_AB) * 100  # L1 loss weight

                    loss_G = loss_G_GAN + loss_G_L1
                    loss_G.backward()
                    optimizerG.step()

                    pbar.set_postfix({
                        'D_loss': loss_D.item(),
                        'G_loss': loss_G.item(),
                        'G_L1': loss_G_L1.item()
                    })

                    mlflow.log_metrics({
                        "D_loss": loss_D.item(),
                        "G_loss": loss_G.item(),
                        "G_L1_loss": loss_G_L1.item()
                    }, step=epoch * num_iterations + i)

                visualize_results(epoch, generator, train_loader, device)

                checkpoint = {
                    'epoch': epoch,
                    'generator_state_dict': generator.state_dict(),
                    'discriminator_state_dict': discriminator.state_dict(),
                    'optimizerG_state_dict': optimizerG.state_dict(),
                    'optimizerD_state_dict': optimizerD.state_dict(),
                }
                save_checkpoint(checkpoint, filename=checkpoint_path)

            print("Training completed successfully.")
            
            # Log the generator model
            mlflow.pytorch.log_model(generator, "generator_model")
            
            # Register the model
            model_uri = f"runs:/{run.info.run_id}/generator_model"
            mlflow.register_model(model_uri, "colorizer_generator")
            
            return run.info.run_id
            
        except Exception as e:
            print(f"Error during training: {str(e)}")
            mlflow.log_param("error", str(e))
            return None

def test_training(generator, discriminator, train_loader, device):
    print("Testing training process...")
    try:
        train(generator, discriminator, train_loader, num_epochs=1, device=device)
        print("Training process test passed.")
        return True
    except Exception as e:
        print(f"Training process test failed: {str(e)}")
        return False

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train Colorizer model")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
                        help="Device to use for training (cuda/cpu)")
    parser.add_argument("--batch_size", type=int, default=32, help="Batch size for training")
    parser.add_argument("--num_epochs", type=int, default=50, help="Number of epochs to train")
    parser.add_argument("--test", action="store_true", help="Run in test mode")
    args = parser.parse_args()

    device = torch.device(args.device)
    print(f"Using device: {device}")

    try:
        train_loader = create_dataloaders(batch_size=args.batch_size)

        generator = Generator().to(device)
        discriminator = Discriminator().to(device)

        generator.apply(init_weights)
        discriminator.apply(init_weights)

        if args.test:
            if test_training(generator, discriminator, train_loader, device):
                print("All tests passed.")
            else:
                print("Tests failed.")
        else:
            run_id = train(generator, discriminator, train_loader, num_epochs=args.num_epochs, device=device)
            if run_id:
                print(f"Training completed. Run ID: {run_id}")
                # Save the run ID to a file for easy access by the inference script
                with open("latest_run_id.txt", "w") as f:
                    f.write(run_id)
            else:
                print("Training failed.")

    except Exception as e:
        print(f"Critical error in main execution: {str(e)}")