Spaces:
Sleeping
Sleeping
File size: 9,389 Bytes
02f3f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import mlflow
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
from skimage.color import lab2rgb, rgb2lab
import argparse
from itertools import islice
from PIL import Image
import torchvision.transforms as transforms
from data_ingestion import ColorizeIterableDataset, create_dataloaders
from model import Generator, Discriminator, init_weights
EXPERIMENT_NAME = "Colorizer_Experiment"
def setup_mlflow():
experiment = mlflow.get_experiment_by_name(EXPERIMENT_NAME)
if experiment is None:
experiment_id = mlflow.create_experiment(EXPERIMENT_NAME)
else:
experiment_id = experiment.experiment_id
return experiment_id
def lab_to_rgb(L, ab):
"""Convert L and ab channels to RGB image"""
L = (L + 1.) * 50.
ab = ab * 128.
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
rgb_imgs = []
for img in Lab:
img_rgb = lab2rgb(img)
rgb_imgs.append(img_rgb)
return np.stack(rgb_imgs, axis=0)
def preprocess_image(image_path):
img = Image.open(image_path).convert('RGB')
img = img.resize((256, 256)) # Resize to a consistent size
img_lab = rgb2lab(img)
img_lab = (img_lab + [0, 128, 128]) / [100, 255, 255] # Normalize LAB values
return img_lab[:,:,0], img_lab[:,:,1:]
def visualize_results(epoch, generator, train_loader, device):
generator.eval()
with torch.no_grad():
for inputs, real_AB in train_loader:
inputs, real_AB = inputs.to(device), real_AB.to(device)
fake_AB = generator(inputs)
fake_rgb = lab_to_rgb(inputs.cpu(), fake_AB.cpu())
real_rgb = lab_to_rgb(inputs.cpu(), real_AB.cpu())
img_grid = make_grid(torch.from_numpy(np.concatenate([real_rgb, fake_rgb], axis=3)).permute(0, 3, 1, 2), normalize=True, nrow=4)
plt.figure(figsize=(15, 15))
plt.imshow(img_grid.permute(1, 2, 0).cpu())
plt.axis('off')
plt.title(f'Epoch {epoch}')
plt.savefig(f'results/epoch_{epoch}.png')
mlflow.log_artifact(f'results/epoch_{epoch}.png')
plt.close()
break # Only visualize one batch
generator.train()
def save_checkpoint(state, filename="checkpoint.pth.tar"):
torch.save(state, filename)
mlflow.log_artifact(filename)
def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD):
if os.path.isfile(filename):
print(f"Loading checkpoint '{filename}'")
checkpoint = torch.load(filename)
start_epoch = checkpoint['epoch'] + 1
generator.load_state_dict(checkpoint['generator_state_dict'])
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
optimizerG.load_state_dict(checkpoint['optimizerG_state_dict'])
optimizerD.load_state_dict(checkpoint['optimizerD_state_dict'])
print(f"Loaded checkpoint '{filename}' (epoch {checkpoint['epoch']})")
return start_epoch
else:
print(f"No checkpoint found at '{filename}'")
return 0
def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
criterion = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()
optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs("results", exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD)
experiment_id = setup_mlflow()
with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
try:
for epoch in range(start_epoch, num_epochs):
generator.train()
discriminator.train()
# Use a fixed number of iterations per epoch
num_iterations = 1000
pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
for i, (real_L, real_AB) in pbar:
real_L, real_AB = real_L.to(device), real_AB.to(device)
batch_size = real_L.size(0)
# Train Discriminator
optimizerD.zero_grad()
fake_AB = generator(real_L)
fake_LAB = torch.cat([real_L, fake_AB], dim=1)
real_LAB = torch.cat([real_L, real_AB], dim=1)
pred_fake = discriminator(fake_LAB.detach())
loss_D_fake = criterion(pred_fake, torch.zeros_like(pred_fake))
pred_real = discriminator(real_LAB)
loss_D_real = criterion(pred_real, torch.ones_like(pred_real))
loss_D = (loss_D_fake + loss_D_real) * 0.5
loss_D.backward()
optimizerD.step()
# Train Generator
optimizerG.zero_grad()
fake_AB = generator(real_L)
fake_LAB = torch.cat([real_L, fake_AB], dim=1)
pred_fake = discriminator(fake_LAB)
loss_G_GAN = criterion(pred_fake, torch.ones_like(pred_fake))
loss_G_L1 = l1_loss(fake_AB, real_AB) * 100 # L1 loss weight
loss_G = loss_G_GAN + loss_G_L1
loss_G.backward()
optimizerG.step()
pbar.set_postfix({
'D_loss': loss_D.item(),
'G_loss': loss_G.item(),
'G_L1': loss_G_L1.item()
})
mlflow.log_metrics({
"D_loss": loss_D.item(),
"G_loss": loss_G.item(),
"G_L1_loss": loss_G_L1.item()
}, step=epoch * num_iterations + i)
visualize_results(epoch, generator, train_loader, device)
checkpoint = {
'epoch': epoch,
'generator_state_dict': generator.state_dict(),
'discriminator_state_dict': discriminator.state_dict(),
'optimizerG_state_dict': optimizerG.state_dict(),
'optimizerD_state_dict': optimizerD.state_dict(),
}
save_checkpoint(checkpoint, filename=checkpoint_path)
print("Training completed successfully.")
# Log the generator model
mlflow.pytorch.log_model(generator, "generator_model")
# Register the model
model_uri = f"runs:/{run.info.run_id}/generator_model"
mlflow.register_model(model_uri, "colorizer_generator")
return run.info.run_id
except Exception as e:
print(f"Error during training: {str(e)}")
mlflow.log_param("error", str(e))
return None
def test_training(generator, discriminator, train_loader, device):
print("Testing training process...")
try:
train(generator, discriminator, train_loader, num_epochs=1, device=device)
print("Training process test passed.")
return True
except Exception as e:
print(f"Training process test failed: {str(e)}")
return False
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train Colorizer model")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to use for training (cuda/cpu)")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size for training")
parser.add_argument("--num_epochs", type=int, default=50, help="Number of epochs to train")
parser.add_argument("--test", action="store_true", help="Run in test mode")
args = parser.parse_args()
device = torch.device(args.device)
print(f"Using device: {device}")
try:
train_loader = create_dataloaders(batch_size=args.batch_size)
generator = Generator().to(device)
discriminator = Discriminator().to(device)
generator.apply(init_weights)
discriminator.apply(init_weights)
if args.test:
if test_training(generator, discriminator, train_loader, device):
print("All tests passed.")
else:
print("Tests failed.")
else:
run_id = train(generator, discriminator, train_loader, num_epochs=args.num_epochs, device=device)
if run_id:
print(f"Training completed. Run ID: {run_id}")
# Save the run ID to a file for easy access by the inference script
with open("latest_run_id.txt", "w") as f:
f.write(run_id)
else:
print("Training failed.")
except Exception as e:
print(f"Critical error in main execution: {str(e)}") |