Spaces:
Running
Running
import pickle | |
import os | |
import re | |
from . import symbols | |
from .fr_phonemizer import cleaner as fr_cleaner | |
from .fr_phonemizer import fr_to_ipa | |
from transformers import AutoTokenizer | |
def distribute_phone(n_phone, n_word): | |
phones_per_word = [0] * n_word | |
for task in range(n_phone): | |
min_tasks = min(phones_per_word) | |
min_index = phones_per_word.index(min_tasks) | |
phones_per_word[min_index] += 1 | |
return phones_per_word | |
def text_normalize(text): | |
text = fr_cleaner.french_cleaners(text) | |
return text | |
model_id = 'dbmdz/bert-base-french-europeana-cased' | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def g2p(text, pad_start_end=True, tokenized=None): | |
if tokenized is None: | |
tokenized = tokenizer.tokenize(text) | |
# import pdb; pdb.set_trace() | |
phs = [] | |
ph_groups = [] | |
for t in tokenized: | |
if not t.startswith("#"): | |
ph_groups.append([t]) | |
else: | |
ph_groups[-1].append(t.replace("#", "")) | |
phones = [] | |
tones = [] | |
word2ph = [] | |
# print(ph_groups) | |
for group in ph_groups: | |
w = "".join(group) | |
phone_len = 0 | |
word_len = len(group) | |
if w == '[UNK]': | |
phone_list = ['UNK'] | |
else: | |
phone_list = list(filter(lambda p: p != " ", fr_to_ipa.fr2ipa(w))) | |
for ph in phone_list: | |
phones.append(ph) | |
tones.append(0) | |
phone_len += 1 | |
aaa = distribute_phone(phone_len, word_len) | |
word2ph += aaa | |
# print(phone_list, aaa) | |
# print('=' * 10) | |
if pad_start_end: | |
phones = ["_"] + phones + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
return phones, tones, word2ph | |
def get_bert_feature(text, word2ph, device=None): | |
from text import french_bert | |
return french_bert.get_bert_feature(text, word2ph, device=device) | |
if __name__ == "__main__": | |
ori_text = 'Ce service gratuit est“”"" 【disponible》 en chinois 【simplifié] et autres 123' | |
# ori_text = "Ils essayaient vainement de faire comprendre à ma mère qu'avec les cent mille francs que m'avait laissé mon père," | |
# print(ori_text) | |
text = text_normalize(ori_text) | |
print(text) | |
phoneme = fr_to_ipa.fr2ipa(text) | |
print(phoneme) | |
from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer | |
from text.cleaner_multiling import unicleaners | |
def text_normalize(text): | |
text = unicleaners(text, cased=True, lang='fr') | |
return text | |
# print(ori_text) | |
text = text_normalize(ori_text) | |
print(text) | |
phonemizer = MultiPhonemizer({"fr-fr": "espeak"}) | |
# phonemizer.lang_to_phonemizer['fr'].keep_stress = True | |
# phonemizer.lang_to_phonemizer['fr'].use_espeak_phonemes = True | |
phoneme = phonemizer.phonemize(text, separator="", language='fr-fr') | |
print(phoneme) |