File size: 6,351 Bytes
907f0e0
 
 
 
 
 
 
 
77a2047
907f0e0
 
77a2047
907f0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a2047
907f0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a2047
 
907f0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a2047
 
 
 
907f0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a2047
907f0e0
 
 
 
 
7db42c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
import os
import tempfile

# Configurar o tema para dark
st.set_page_config(page_title="RAG Q&A Conversacional", layout="wide", initial_sidebar_state="expanded", page_icon="🤖", menu_items=None)

# Aplicar o tema dark
st.markdown("""

    <style>

    .stApp {

        background-color: #0e1117;

        color: #fafafa;

    }

    .stSidebar {

        background-color: #262730;

    }

    .stButton>button {

        color: #4F8BF9;

        border-radius: 20px;

        height: 3em;

        width: 200px;

    }

    .stTextInput>div>div>input {

        color: #4F8BF9;

    }

    </style>

    """, unsafe_allow_html=True)

# Sidebar com orientações
st.sidebar.title("Menu")
st.sidebar.markdown("""

# ... [O conteúdo do sidebar permanece o mesmo] ...

""")

st.title("RAG conversacional com upload em PDF e histórico de bate-papo")
st.write("Carregue PDFs e converse com o conteúdo deles - aqui é usado o modelo de LLM Gemma2-9b-It e a plataforma de embeddings é all-MiniLM-L6-v2")

# Solicitar as chaves de API
groq_api_key = st.text_input("Insira sua chave de API Groq:", type="password")
huggingface_api_token = st.text_input("Insira seu token de API Hugging Face:", type="password")

if groq_api_key and huggingface_api_token:
    # Configurar o token da API do Hugging Face
    os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_api_token

    # Inicializar o modelo de linguagem e embeddings
    llm = ChatGroq(groq_api_key=groq_api_key, model_name="Gemma2-9b-It")
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

    session_id = st.text_input("Session ID", value="default_session")

    if 'store' not in st.session_state:
        st.session_state.store = {}

    uploaded_files = st.file_uploader("Faça o upload de um ou mais arquivos PDF: ", type="pdf", accept_multiple_files=True)

    if uploaded_files:
        documents = []
        for uploaded_file in uploaded_files:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
                temp_file.write(uploaded_file.getvalue())
                temp_file_path = temp_file.name

            loader = PyPDFLoader(temp_file_path)
            docs = loader.load()
            documents.extend(docs)
            os.unlink(temp_file_path)  # Remove temporary file

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        splits = text_splitter.split_documents(documents)

        # Create FAISS vector store
        vectorstore = FAISS.from_documents(splits, embeddings)

        st.success(f"Processed {len(splits)} document chunks.")

        retriever = vectorstore.as_retriever()

        contextualize_q_system_prompt = (
            "Given a chat history and the latest user question "
            "which might reference context in the chat history, "
            "formulate a standalone question which can be understood "
            "without the chat history. Do NOT answer the question, "
            "just reformulate it if needed and otherwise return it as is."
        )
        contextualize_q_prompt = ChatPromptTemplate.from_messages([
            ("system", contextualize_q_system_prompt),
            MessagesPlaceholder("chat_history"),
            ("human", "{input}"),
        ])

        history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)

        system_prompt = (
            "Você é um assistente para tarefas de resposta a perguntas. Responda em Português do Brasil a menos que seja pedido outro idioma"
            "Use os seguintes pedaços de contexto recuperado para responder "
            "à pergunta. Se você não sabe a resposta, diga que "
            "não sabe. Use no máximo três frases e mantenha a "
            "resposta concisa."
            "\n\n"
            "{context}"
        )
        qa_prompt = ChatPromptTemplate.from_messages([
            ("system", system_prompt),
            MessagesPlaceholder("chat_history"),
            ("human", "{input}"),
        ])

        question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
        rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)

        def get_session_history(session: str) -> BaseChatMessageHistory:
            if session not in st.session_state.store:
                st.session_state.store[session] = ChatMessageHistory()
            return st.session_state.store[session]

        conversational_rag_chain = RunnableWithMessageHistory(
            rag_chain, get_session_history,
            input_messages_key="input",
            history_messages_key="chat_history",
            output_messages_key="answer"
        )

        user_input = st.text_input("Sua pergunta:")
        if user_input:
            with st.spinner("Processando sua pergunta..."):
                session_history = get_session_history(session_id)
                response = conversational_rag_chain.invoke(
                    {"input": user_input},
                    config={"configurable": {"session_id": session_id}},
                )
            st.write("Assistente:", response['answer'])
            
            with st.expander("Ver histórico do chat"):
                for message in session_history.messages:
                    st.write(f"**{message.type}:** {message.content}")
else:
    st.warning("Por favor, insira tanto a chave da API do Groq quanto o token da API do Hugging Face.")