Gosse Minnema
Add sociofillmore code, load dataset via private dataset repo
b11ac48
from collections import defaultdict
import glob
import json
import os
import re
import random
import sys
from typing import List, Dict, Tuple
import pandas as pd
import numpy as np
from sociofillmore.common.analyze_text import load_caches, process_fn_sentence, FrameStructure, read_frames_of_interest
RANDOM_SEED = 9718
NUM_EVALUATION_SENTENCES = 150
EVALITA_MODEL = "lome_evalita_plus_fn"
# EVALITA_MODEL = "lome_evalita_plus_fn_0conf"
OUT_FOLDER = f"0shot__vs__{EVALITA_MODEL.split('_', maxsplit=1)[1]}"
print(OUT_FOLDER)
random.seed(RANDOM_SEED)
def map_predicates_to_frames(structures: List[FrameStructure]) -> Dict[str, str]:
mapping = {}
for struct in structures:
pred_key = "_".join(struct.target.tokens_str)
mapping[pred_key] = struct.frame
return mapping
def make_evaluation_sample(diffs_df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]:
def make_experimental_columns(row: pd.Series):
if random.choice((True, False)):
left_col = "predicted_frame_0shot"
right_col = "predicted_frame_evalita"
else:
left_col = "predicted_frame_evalita"
right_col = "predicted_frame_0shot"
exp_info = pd.Series({
"prediction_1": row[left_col],
"prediction_2": row[right_col],
"model_1": left_col,
"model_2": right_col
})
return row.append(exp_info)
sample = diffs_df.sample(n=NUM_EVALUATION_SENTENCES,
random_state=RANDOM_SEED).reset_index(drop=True)
with_exp_info = sample.apply(make_experimental_columns, axis=1)
annotator_sheet = with_exp_info[[
"sentence", "predicate", "prediction_1", "prediction_2"]]
# add answer columns
for answer_field in ["1_is_best", "2_is_best", "both_are_good", "both_are_bad", "missing_frame"]:
annotator_sheet.insert(len(annotator_sheet.columns),
f"answer::{answer_field}", np.nan)
# annotator_sheet[f"answer::{answer_field}"] = np.nan
return annotator_sheet, with_exp_info
def make_annotation_experiment():
_, deep_frame_cache = load_caches("femicides/rai")
frames_of_interest = read_frames_of_interest("femicides/rai")
all_differences = []
foi_differences = [] # foi='frame of interest'
# number of predicates that have been annotated by at least one model
num_all_predictions = 0
num_foi_predictions = 0
num_z_shot_all_predictions = 0
num_z_shot_foi_predictions = 0
num_evalita_all_predictions = 0
num_evalita_foi_predictions = 0
for ev_dir in sorted(glob.glob("output/femicides/lome/lome_0shot/multilabel/rai/*")):
ev_id = os.path.basename(ev_dir).rstrip("/")
print(f"event={ev_id}")
for doc_file in sorted(glob.glob(f"{ev_dir}/*.comm.json")):
doc_id = re.search(r'/lome_(\d+)\.comm\.json', doc_file).group(1)
print(f"\tdoc={doc_id}")
with open(doc_file, encoding="utf-8") as f:
z_shot_annotations = json.load(f)
with open(doc_file.replace("/lome_0shot/", f"/{EVALITA_MODEL}/"), encoding="utf-8") as f:
evalita_annotations = json.load(f)
for sent_idx, (z_shot_sent, evalita_sent) in enumerate(zip(z_shot_annotations, evalita_annotations)):
z_shot_structs = process_fn_sentence(
z_shot_sent, deep_frame_cache)
evalita_structs = process_fn_sentence(
evalita_sent, deep_frame_cache)
z_shot_frames = {s.frame for s in z_shot_structs.values()}
evalita_frames = {s.frame for s in evalita_structs.values()}
overlapping_frames = z_shot_frames.intersection(evalita_frames)
print(f"\t\tsent #{sent_idx}: {len(z_shot_frames)}x lome_0shot frames, "
f"{len(evalita_frames)}x evalita frames, {len(overlapping_frames)}x overlapping")
z_shot_preds_to_frames = map_predicates_to_frames(
z_shot_structs.values())
evalita_preds_to_frames = map_predicates_to_frames(
evalita_structs.values())
all_predicates = sorted(set(z_shot_preds_to_frames.keys()).union(
evalita_preds_to_frames.keys()))
for predicate in all_predicates:
print(f"\t\t\tpredicate={predicate}")
z_shot_frame = z_shot_preds_to_frames.get(predicate)
evalita_frame = evalita_preds_to_frames.get(predicate)
has_relevant_frame = z_shot_frame in frames_of_interest or evalita_frame in frames_of_interest
if z_shot_frame is not None:
num_z_shot_all_predictions += 1
if z_shot_frame in frames_of_interest:
num_z_shot_foi_predictions += 1
if evalita_frame is not None:
num_evalita_all_predictions += 1
if evalita_frame in frames_of_interest:
num_evalita_foi_predictions += 1
num_all_predictions += 1
if has_relevant_frame:
num_foi_predictions += 1
if z_shot_frame != evalita_frame:
diff = {
"ev_id": ev_id,
"doc_id": doc_id,
"sent_idx": sent_idx,
"sentence": " ".join(z_shot_sent["tokens"]),
"predicate": predicate,
"predicted_frame_0shot": z_shot_frame or "_",
"predicted_frame_evalita": evalita_frame or "_"
}
all_differences.append(diff)
if has_relevant_frame:
foi_differences.append(diff)
print()
print()
print(f"num_z_shot_all_predictions = {num_z_shot_all_predictions}")
print(f"num_z_shot_foi_predictions = {num_z_shot_foi_predictions}")
print(f"num_evalita_all_predictions = {num_evalita_all_predictions}")
print(f"num_evalita_foi_predictions = {num_evalita_foi_predictions}")
print(
f"all_differences: {len(all_differences)}/{num_all_predictions}={len(all_differences)/num_all_predictions}")
print(
f"foi_differences: {len(foi_differences)}/{num_foi_predictions}={len(foi_differences) / num_foi_predictions}")
# all_diffs_df = pd.DataFrame(all_differences)
# foi_diffs_df = pd.DataFrame(foi_differences)
# all_diffs_df.to_csv("output/femicides/compare_lome_models/all_differences.csv")
# foi_diffs_df.to_csv("output/femicides/compare_lome_models/foi_differences.csv")
# annotator_sheet, experiment_sheet = make_evaluation_sample(foi_diffs_df)
# annotator_sheet.to_csv("output/femicides/compare_lome_models/annotator_sheet.csv")
# experiment_sheet.to_csv("output/femicides/compare_lome_models/experiment_sheet.csv")
def analyze_annotations():
ann_df = pd.read_excel("resources/sara_lome_annotations.xlsx", index_col=0)
exp_df = pd.read_csv(
f"output/femicides/compare_lome_models/{OUT_FOLDER}/experiment_sheet.csv", index_col=0)
ann_df_ = ann_df.join(exp_df[["model_1", "model_2"]])
ann_df_proc = ann_df_.apply(combine_labels, axis=1)
print(ann_df_proc.head())
ann_df_proc.to_csv(
f"output/femicides/compare_lome_models/{OUT_FOLDER}/annotator_sheet_processed.csv")
def combine_labels(row: pd.Series) -> pd.Series:
model_1 = row["model_1"].split("_")[-1]
model_2 = row["model_2"].split("_")[-1]
if row["answer::1_is_best"] == "X":
answer = f"{model_1}_is_best"
elif row["answer::2_is_best"] == "X":
answer = f"{model_2}_is_best"
elif row["answer::both_are_good"] == "X":
answer = "both_are_good"
elif row["answer::both_are_bad"] == "X":
answer = "both_are_bad"
elif row["answer::missing_frame"] == "X":
answer = "missing_frame"
else:
raise ValueError(f"Missing annotation in row {row}")
row_ = row.drop([k for k in row.keys() if k.startswith("answer::")])
return row_.append(pd.Series({"answer": answer}))
def prep_svm_challenge():
annotated_df = pd.read_csv(
"output/femicides/compare_lome_models/0shot__vs__evalita_plus_fn/annotator_sheet_processed.csv", index_col=0)
evalita_train_data = []
with open("../stupid-svm-frameid/data/evalita_jsonl/evalita_train.jsonl", encoding="utf-8") as f_in:
for line in f_in:
evalita_train_data.append(json.loads(line))
# evalita_frame_labels = {annotation["label"] for sentence in evalita_train_data for annotation in sentence["annotations"]}
evalita_frame_labels = defaultdict(int)
for sentence in evalita_train_data:
for annotation in sentence["annotations"]:
evalita_frame_labels[annotation["label"]] += 1
evalita_train_counts = pd.DataFrame(evalita_frame_labels.items(), columns=["label", "count"]).sort_values(by="count")
evalita_train_counts.to_csv("output/femicides/compare_lome_models/evalita_trainset_counts.csv")
print("Evalita frame labels:", sorted(evalita_frame_labels.keys()))
out = []
zshot_score = 0
evalita_score = 0
for _, row in annotated_df.iterrows():
answer = row["answer"]
if answer not in ["0shot_is_best", "evalita_is_best", "both_are_good"]:
continue
tokens = row["sentence"].split()
predicate = row["predicate"].split("_")[0] # to keep things simple, only look at first token of predicate
predicate_idx = [i for i, tok in enumerate(tokens) if tok == predicate][0]
if answer == "0shot_is_best":
if row["model_1"] == "predicted_frame_0shot":
zshot_label = label = row["prediction_1"]
evalita_label = row["prediction_2"]
else:
zshot_label = label = row["prediction_2"]
evalita_label = row["prediction_1"]
elif answer == "evalita_is_best":
if row["model_1"] == "predicted_frame_evalita":
evalita_label = label = row["prediction_1"]
zshot_label = row["prediction_2"]
else:
evalita_label = label = row["prediction_2"]
zshot_label = row["prediction_1"]
else:
label = row["prediction_1"]
if row["model_1"] == "predicted_frame_evalita":
evalita_label = row["prediction_1"]
zshot_label = row["prediction_2"]
else:
evalita_label = row["prediction_2"]
zshot_label = row["prediction_1"]
if label not in evalita_frame_labels:
print("\tskipping gold frame label not present in EVALITA: ", label)
continue
if zshot_label == label:
zshot_score += 1
if evalita_label == label:
evalita_score += 1
out.append({"tokens": tokens, "annotations": [{"label": label, "span": [predicate_idx, predicate_idx], "lu": None, "children": []}]})
print(f"Found {len(out)} relevant annotations")
print("0-shot score: ", zshot_score / len(out))
print("evalita score: ", evalita_score / len(out))
with open("output/femicides/compare_lome_models/svm_challenge.jsonl", "w", encoding="utf-8") as f_out:
for line in out:
f_out.write(json.dumps(line) + os.linesep)
f_out.write(os.linesep)
if __name__ == '__main__':
action = sys.argv[1]
assert action in ["make", "analyze", "prep_svm_challenge"]
if action == "make":
make_annotation_experiment()
elif action == "analyze":
analyze_annotations()
else:
prep_svm_challenge()