Gosse Minnema
Re-enable LOME
2890e34
local env = import "../env.jsonnet";
local dataset_path = env.str("DATA_PATH", "data/ace/events");
local ontology_path = "data/ace/ontology.tsv";
local debug = false;
# embedding
local label_dim = 64;
local pretrained_model = env.str("ENCODER", "roberta-large");
# module
local dropout = 0.2;
local bio_dim = 512;
local bio_layers = 2;
local span_typing_dims = [256, 256];
local event_smoothing_factor = env.json("SMOOTHING", "0.0");
local arg_smoothing_factor = env.json("SMOOTHING", "0.0");
local layer_fix = 0;
# training
local typing_loss_factor = 8.0;
local grad_acc = env.json("GRAD_ACC", "1");
local max_training_tokens = 512;
local max_inference_tokens = 1024;
local lr = env.json("LR", "1e-3");
local cuda_devices = env.json("CUDA_DEVICES", "[0]");
{
dataset_reader: {
type: "concrete",
debug: debug,
pretrained_model: pretrained_model,
ignore_label: false,
[ if debug then "max_instances" ]: 128,
event_smoothing_factor: event_smoothing_factor,
arg_smoothing_factor: event_smoothing_factor,
},
train_data_path: dataset_path + "/train.tar.gz",
validation_data_path: dataset_path + "/dev.tar.gz",
test_data_path: dataset_path + "/test.tar.gz",
datasets_for_vocab_creation: ["train"],
data_loader: {
batch_sampler: {
type: "max_tokens_sampler",
max_tokens: max_training_tokens,
sorting_keys: ['tokens']
}
},
validation_data_loader: {
batch_sampler: {
type: "max_tokens_sampler",
max_tokens: max_inference_tokens,
sorting_keys: ['tokens']
}
},
model: {
type: "span",
word_embedding: {
token_embedders: {
"pieces": {
type: "pretrained_transformer",
model_name: pretrained_model,
}
},
},
span_extractor: {
type: 'combo',
sub_extractors: [
{
type: 'self_attentive',
},
{
type: 'bidirectional_endpoint',
}
]
},
span_finder: {
type: "bio",
bio_encoder: {
type: "lstm",
hidden_size: bio_dim,
num_layers: bio_layers,
bidirectional: true,
dropout: dropout,
},
no_label: false,
},
span_typing: {
type: 'mlp',
hidden_dims: span_typing_dims,
},
metrics: [{type: "srl"}],
ontology_path: ontology_path,
typing_loss_factor: typing_loss_factor,
label_dim: label_dim,
max_decoding_spans: 128,
max_recursion_depth: 2,
debug: debug,
},
trainer: {
num_epochs: 128,
patience: null,
[if std.length(cuda_devices) == 1 then "cuda_device"]: cuda_devices[0],
validation_metric: "+arg-c_f",
num_gradient_accumulation_steps: grad_acc,
optimizer: {
type: "transformer",
base: {
type: "adam",
lr: lr,
},
embeddings_lr: 0.0,
encoder_lr: 1e-5,
pooler_lr: 1e-5,
layer_fix: layer_fix,
}
},
cuda_devices:: cuda_devices,
[if std.length(cuda_devices) > 1 then "distributed"]: {
"cuda_devices": cuda_devices
},
[if std.length(cuda_devices) == 1 then "evaluate_on_test"]: true,
}