|
from llama_index.llms.anthropic import Anthropic |
|
from llama_index.llms.mistralai import MistralAI |
|
from llama_index.embeddings.mistralai import MistralAIEmbedding |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.core.settings import Settings |
|
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex |
|
import gradio as gr |
|
from gradio_pdf import PDF |
|
import os |
|
|
|
choices = ['open-mistral-7b', 'claude-3-haiku'] |
|
|
|
def model_selection(choices): |
|
if choices == "open-mistral-7b": |
|
api_key = 'lJzlUC91kbvbMlOqCdAVorDdnmLEIU8b' |
|
llm = MistralAI(api_key=api_key, model="open-mistral-7b") |
|
embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=api_key) |
|
|
|
else: |
|
os.environ["ANTHROPIC_API_KEY"] = "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" |
|
llm = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"], model = 'claude-3-haiku-20240307') |
|
embed_model = HuggingFaceEmbedding(model_name='BAAI/bge-base-en-v1.5') |
|
|
|
Settings.llm = llm |
|
Settings.embed_model = embed_model |
|
|
|
return choices |
|
|
|
def qa(question: str, doc: str) -> str: |
|
my_pdf = SimpleDirectoryReader(input_files=[doc]).load_data() |
|
my_pdf_index = VectorStoreIndex.from_documents(my_pdf) |
|
my_pdf_engine = my_pdf_index.as_query_engine() |
|
response = my_pdf_engine.query(question) |
|
return response |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_choice = gr.Radio(choices=choices, label = 'Choose a model') |
|
|
|
model_choice.change(model_selection, inputs=model_choice) |
|
pdf_input = gr.File(label="Upload PDF") |
|
|
|
with gr.Column(): |
|
|
|
question_input = gr.Textbox(label="Ask Question from PDF document") |
|
qa_button = gr.Button("Get Answer") |
|
answer_output = gr.Textbox(label="Answer") |
|
qa_button.click(fn=qa, inputs=[question_input, pdf_input], outputs=answer_output) |
|
|
|
demo.launch(debug = True) |
|
|
|
|