File size: 30,769 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# Authors: Hui Ren (rhfeiyang.github.io)
import torch
from PIL import Image
import argparse
import os, json, random

import matplotlib.pyplot as plt
import glob, re

from tqdm import tqdm
import numpy as np

import sys
import gc
from transformers import CLIPTextModel, CLIPTokenizer, BertModel, BertTokenizer

# import train_util

from utils.train_util import get_noisy_image, encode_prompts

from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler, DDIMScheduler, PNDMScheduler

from typing import Any, Dict, List, Optional, Tuple, Union
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
import argparse
# from diffusers.training_utils import EMAModel
import shutil
import yaml
from easydict import EasyDict
from utils.metrics import StyleContentMetric
from torchvision import transforms

from custom_datasets.coco import CustomCocoCaptions
from custom_datasets.imagepair import ImageSet
from custom_datasets import get_dataset
# from stable_diffusion.utils.modules import get_diffusion_modules
# from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils.torch_utils import randn_tensor
import pickle
import time
def flush():
    torch.cuda.empty_cache()
    gc.collect()

def get_train_method(lora_weight):
    if lora_weight is None:
        return 'None'
    if 'full' in lora_weight:
        train_method = 'full'
    elif "down_1_up_2_attn" in lora_weight:
        train_method = 'up_2_attn'
        print(f"Using up_2_attn for {lora_weight}")
    elif "down_2_up_1_up_2_attn" in lora_weight:
        train_method = 'down_2_up_2_attn'
    elif "down_2_up_2_attn" in lora_weight:
        train_method = 'down_2_up_2_attn'
    elif "down_2_attn" in lora_weight:
        train_method = 'down_2_attn'
    elif 'noxattn' in lora_weight:
        train_method = 'noxattn'
    elif "xattn" in lora_weight:
        train_method = 'xattn'
    elif  "attn" in lora_weight:
        train_method = 'attn'
    elif "all_up" in lora_weight:
        train_method = 'all_up'
    else:
        train_method = 'None'
    return train_method

def get_validation_dataloader(infer_prompts:list[str]=None, infer_images :list[str]=None,resolution=512, batch_size=10, num_workers=4, val_set="laion_pop500"):
    data_transforms = transforms.Compose(
        [
            transforms.Resize(resolution),
            transforms.CenterCrop(resolution),
        ]
    )
    def preprocess(example):
        ret={}
        ret["image"] = data_transforms(example["image"]) if "image" in example else None
        if "caption" in example:
            if isinstance(example["caption"][0], list):
                ret["caption"] = example["caption"][0][0]
            else:
                ret["caption"] = example["caption"][0]
        if "seed" in example:
            ret["seed"] = example["seed"]
        if "id" in example:
            ret["id"] = example["id"]
        if "path" in example:
            ret["path"] = example["path"]
        return ret

    def collate_fn(examples):
        out = {}
        if "image" in examples[0]:
            pixel_values = [example["image"] for example in examples]
            out["pixel_values"] = pixel_values
        # notice: only take the first prompt for each image
        if "caption" in examples[0]:
            prompts = [example["caption"] for example in examples]
            out["prompts"] = prompts
        if "seed" in examples[0]:
            seeds = [example["seed"] for example in examples]
            out["seed"] = seeds
        if "path" in examples[0]:
            paths = [example["path"] for example in examples]
            out["path"] = paths
        return out
    if infer_prompts is None:
        if val_set == "lhq500":
            dataset = get_dataset("lhq_sub500", get_val=False)["train"]
        elif val_set == "custom_coco100":
            dataset = get_dataset("custom_coco100", get_val=False)["train"]
        elif val_set == "custom_coco500":
            dataset = get_dataset("custom_coco500", get_val=False)["train"]

        elif os.path.isdir(val_set):
            image_folder = os.path.join(val_set, "paintings")
            caption_folder = os.path.join(val_set, "captions")
            dataset = ImageSet(folder=image_folder, caption=caption_folder, keep_in_mem=True)
        elif "custom_caption" in val_set:
            from custom_datasets.custom_caption import Caption_set
            name = val_set.replace("custom_caption_", "")
            dataset = Caption_set(set_name = name)
        elif val_set == "laion_pop500":
            dataset = get_dataset("laion_pop500", get_val=False)["train"]
        elif val_set == "laion_pop500_first_sentence":
            dataset = get_dataset("laion_pop500_first_sentence", get_val=False)["train"]
        else:
            raise ValueError("Unknown dataset")
        dataset.with_transform(preprocess)
    elif isinstance(infer_prompts, torch.utils.data.Dataset):
        dataset = infer_prompts
        try:
            dataset.with_transform(preprocess)
        except:
            pass

    else:
        class Dataset(torch.utils.data.Dataset):
            def __init__(self, prompts, images=None):
                self.prompts = prompts
                self.images = images
                self.get_img = False
                if images is not None:
                    assert len(prompts) == len(images)
                    self.get_img = True
                    if isinstance(images[0], str):
                        self.images = [Image.open(image).convert("RGB") for image in images]
                else:
                    self.images = [None] * len(prompts)
            def __len__(self):
                return len(self.prompts)
            def __getitem__(self, idx):
                img = self.images[idx]
                if self.get_img and img is not None:
                    img = data_transforms(img)
                return {"caption": self.prompts[idx], "image":img}
        dataset = Dataset(infer_prompts, infer_images)

    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False,
                                             num_workers=num_workers, pin_memory=True)
    return dataloader

def get_lora_network(unet , lora_path, train_method="None", rank=1, alpha=1.0, device="cuda", weight_dtype=torch.float32):
    if train_method in [None, "None"]:
        train_method = get_train_method(lora_path)
        print(f"Train method: {train_method}")

    network_type = "c3lier"
    if train_method == 'xattn':
        network_type = 'lierla'

    modules = DEFAULT_TARGET_REPLACE
    if network_type == "c3lier":
        modules += UNET_TARGET_REPLACE_MODULE_CONV

    alpha = 1
    if "rank" in lora_path:
        rank = int(re.search(r'rank(\d+)', lora_path).group(1))
    if 'alpha1' in lora_path:
        alpha = 1.0
    print(f"Rank: {rank}, Alpha: {alpha}")

    network = LoRANetwork(
        unet,
        rank=rank,
        multiplier=1.0,
        alpha=alpha,
        train_method=train_method,
    ).to(device, dtype=weight_dtype)
    if lora_path not in [None, "None"]:
        lora_state_dict = torch.load(lora_path)
        miss = network.load_state_dict(lora_state_dict, strict=False)
        print(f"Missing: {miss}")
    ret = {"network": network, "train_method": train_method}
    return ret

def get_model(pretrained_ckpt_path, unet_ckpt=None,revision=None, variant=None, lora_path=None, weight_dtype=torch.float32,

              device="cuda"):
    modules = {}
    pipe = DiffusionPipeline.from_pretrained(pretrained_ckpt_path, revision=revision, variant=variant)
    if unet_ckpt is not None:
        pipe.unet.from_pretrained(unet_ckpt, subfolder="unet_ema", revision=revision, variant=variant)
    unet = pipe.unet
    vae = pipe.vae
    text_encoder = pipe.text_encoder
    tokenizer = pipe.tokenizer
    modules["unet"] = unet
    modules["vae"] = vae
    modules["text_encoder"] = text_encoder
    modules["tokenizer"] = tokenizer
    # tokenizer = modules["tokenizer"]

    unet.enable_xformers_memory_efficient_attention()
    unet.to(device, dtype=weight_dtype)
    if weight_dtype != torch.bfloat16:
        vae.to(device, dtype=torch.float32)
    else:
        vae.to(device, dtype=weight_dtype)
    text_encoder.to(device, dtype=weight_dtype)

    if lora_path is not None:
        network = get_lora_network(unet, lora_path, device=device, weight_dtype=weight_dtype)
        modules["network"] = network
    return modules



@torch.no_grad()
def inference(network: LoRANetwork, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, vae: AutoencoderKL, unet: UNet2DConditionModel, noise_scheduler: LMSDiscreteScheduler,

              dataloader, height:int, width:int, scales:list = np.linspace(0,2,5),save_dir:str=None, seed:int = None,

              weight_dtype: torch.dtype = torch.float32, device: torch.device="cuda", batch_size:int=1, steps:int=50, guidance_scale:float=7.5, start_noise:int=800,

              uncond_prompt:str=None, uncond_embed=None, style_prompt = None, show:bool = False, no_load:bool=False, from_scratch=False):
    print(f"save dir: {save_dir}")
    if start_noise < 0:
        assert from_scratch
    network = network.eval()
    unet = unet.eval()
    vae = vae.eval()
    do_convert = not from_scratch

    if not do_convert:
        try:
            dataloader.dataset.get_img = False
        except:
            pass
        scales = list(scales)
    else:
        scales = ["Real Image"] + list(scales)

    if not no_load and os.path.exists(os.path.join(save_dir, "infer_imgs.pickle")):
        with open(os.path.join(save_dir, "infer_imgs.pickle"), 'rb') as f:
            pred_images = pickle.load(f)
        take=True
        for key in scales:
            if key not in pred_images:
                take=False
                break
        if take:
            print(f"Found existing inference results in {save_dir}", flush=True)
            return pred_images

    max_length = tokenizer.model_max_length

    pred_images = {scale :[] for scale in scales}
    all_seeds = {scale:[] for scale in scales}

    prompts = []
    ori_prompts = []
    if save_dir is not None:
        img_output_dir = os.path.join(save_dir, "outputs")
        os.makedirs(img_output_dir, exist_ok=True)

    if uncond_embed is None:
        if uncond_prompt is None:
            uncond_input_text = [""]
        else:
            uncond_input_text = [uncond_prompt]
        uncond_embed = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = uncond_input_text)


    for batch in dataloader:
        ori_prompt = batch["prompts"]
        image = batch["pixel_values"] if do_convert else None
        if do_convert:
            pred_images["Real Image"] += image
        if isinstance(ori_prompt, list):
            if isinstance(text_encoder, CLIPTextModel):
                # trunc prompts for clip encoder
                ori_prompt = [p.split(".")[0]+"." for p in ori_prompt]
            prompt = [f"{p.strip()[::-1].replace('.', '',1)[::-1]} in the style of {style_prompt}" for p in ori_prompt] if style_prompt is not None else ori_prompt
        else:
            if isinstance(text_encoder, CLIPTextModel):
                ori_prompt = ori_prompt.split(".")[0]+"."
            prompt = f"{prompt.strip()[::-1].replace('.', '',1)[::-1]} in the style of {style_prompt}" if style_prompt is not None else ori_prompt

        bcz = len(prompt)
        single_seed = seed
        if dataloader.batch_size == 1 and seed is None:
            if "seed" in batch:
                single_seed = batch["seed"][0]

        print(f"{prompt}, seed={single_seed}")

        # text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
        # original_embeddings = text_encoder(**text_input)[0]

        prompts += prompt
        ori_prompts += ori_prompt
        # style_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
        # # style_embeddings = text_encoder(**style_input)[0]
        # style_embeddings = text_encoder(style_input.input_ids, return_dict=False)[0]

        style_embeddings = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = prompt)
        original_embeddings = encode_prompts(tokenizer = tokenizer, text_encoder = text_encoder, prompts = ori_prompt)
        if uncond_embed.shape[0] == 1 and bcz > 1:
            uncond_embeddings = uncond_embed.repeat(bcz, 1, 1)
        else:
            uncond_embeddings = uncond_embed
        style_text_embeddings = torch.cat([uncond_embeddings, style_embeddings])
        original_embeddings = torch.cat([uncond_embeddings, original_embeddings])

        generator = torch.manual_seed(single_seed) if single_seed is not None else None
        noise_scheduler.set_timesteps(steps)
        if do_convert:
            noised_latent, _, _ = get_noisy_image(image, vae, generator, unet, noise_scheduler, total_timesteps=int((1000-start_noise)/1000 *steps))
        else:
            latent_shape =  (bcz, 4, height//8, width//8)
            noised_latent = randn_tensor(latent_shape, generator=generator, device=vae.device)
        noised_latent = noised_latent.to(unet.dtype)
        noised_latent = noised_latent * noise_scheduler.init_noise_sigma
        for scale in scales:
            start_time = time.time()
            if not isinstance(scale, float) and not isinstance(scale, int):
                continue

            latents = noised_latent.clone().to(weight_dtype).to(device)
            noise_scheduler.set_timesteps(steps)
            for t in tqdm(noise_scheduler.timesteps):
                if do_convert and t>start_noise:
                    continue
                else:
                    if t > start_noise and start_noise >= 0:
                        current_scale = 0
                    else:
                        current_scale = scale
                network.set_lora_slider(scale=current_scale)
                text_embedding = style_text_embeddings
                # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
                latent_model_input = torch.cat([latents] * 2)

                latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
                # predict the noise residual
                with network:
                    noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embedding).sample

                # perform guidance
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                if isinstance(noise_scheduler, DDPMScheduler):
                    latents = noise_scheduler.step(noise_pred, t, latents, generator=torch.manual_seed(single_seed+t) if single_seed is not None else None).prev_sample
                else:
                    latents = noise_scheduler.step(noise_pred, t, latents).prev_sample

            # scale and decode the image latents with vae
            latents = 1 / 0.18215 * latents.to(vae.dtype)


            with torch.no_grad():
                image = vae.decode(latents).sample
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
            images = (image * 255).round().astype("uint8")


            pil_images = [Image.fromarray(image) for image in images]
            pred_images[scale]+=pil_images
            all_seeds[scale] += [single_seed] * bcz

            end_time = time.time()
            print(f"Time taken for one batch, Art Adapter scale={scale}: {end_time-start_time}", flush=True)

        if save_dir is not None or show:
            end_idx = len(list(pred_images.values())[0])
            for i in range(end_idx-bcz, end_idx):
                keys = list(pred_images.keys())
                images_list = [pred_images[key][i] for key in keys]
                prompt = prompts[i]
                if len(scales)==1:
                    plt.imshow(images_list[0])
                    plt.axis('off')
                    plt.title(f"{prompt}_{single_seed}_start{start_noise}", fontsize=20)
                else:
                    fig, ax = plt.subplots(1, len(images_list), figsize=(len(scales)*5,6), layout="constrained")
                    for id, a in enumerate(ax):
                        a.imshow(images_list[id])
                        if isinstance(scales[id], float) or isinstance(scales[id], int):
                            a.set_title(f"Art Adapter scale={scales[id]}", fontsize=20)
                        else:
                            a.set_title(f"{keys[id]}", fontsize=20)
                        a.axis('off')

                    # plt.suptitle(f"{os.path.basename(lora_weight).replace('.pt','')}", fontsize=20)

                    # plt.tight_layout()
                    # if do_convert:
                    #     plt.suptitle(f"{prompt}\nseed{single_seed}_start{start_noise}_guidance{guidance_scale}", fontsize=20)
                    # else:
                    #     plt.suptitle(f"{prompt}\nseed{single_seed}_from_scratch_guidance{guidance_scale}", fontsize=20)

                if save_dir is not None:
                    plt.savefig(f"{img_output_dir}/{prompt.replace(' ', '_')[:100]}_seed{single_seed}_start{start_noise}.png")
                if show:
                    plt.show()
                plt.close()

        flush()

    if save_dir is not None:
        with open(os.path.join(save_dir, "infer_imgs.pickle" ), 'wb') as f:
            pickle.dump(pred_images, f)
        with open(os.path.join(save_dir, "all_seeds.pickle"), 'wb') as f:
            to_save={"all_seeds":all_seeds, "batch_size":batch_size}
            pickle.dump(to_save, f)
        for scale, images in pred_images.items():
            subfolder = os.path.join(save_dir,"images", f"{scale}")
            os.makedirs(subfolder, exist_ok=True)

            used_prompt = ori_prompts
            if (isinstance(scale, float) or isinstance(scale, int)): #and scale != 0:
                used_prompt = prompts
            for i, image in enumerate(images):
                if scale == "Real Image":
                    suffix = ""
                else:
                    suffix = f"_seed{all_seeds[scale][i]}"
                image.save(os.path.join(subfolder, f"{used_prompt[i].replace(' ', '_')[:100]}{suffix}.jpg"))
        with open(os.path.join(save_dir, "infer_prompts.txt"), 'w') as f:
            for prompt in prompts:
                f.write(f"{prompt}\n")
        with open(os.path.join(save_dir, "ori_prompts.txt"), 'w') as f:
            for prompt in ori_prompts:
                f.write(f"{prompt}\n")
        print(f"Saved inference results to {save_dir}", flush=True)
    return pred_images, prompts

@torch.no_grad()
def infer_metric(ref_image_folder,pred_images, prompts, save_dir, start_noise=""):
    prompts = [prompt.split(" in the style of ")[0] for prompt in prompts]
    scores = {}
    original_images = pred_images["Real Image"] if "Real Image" in pred_images else None
    metric = StyleContentMetric(ref_image_folder)
    for scale, images in pred_images.items():
        score = metric(images, original_images, prompts)

        scores[scale] = score
        print(f"Style transfer score at scale {scale}: {score}")
    scores["ref_path"] = ref_image_folder
    save_name = f"scores_start{start_noise}.json"
    os.makedirs(save_dir, exist_ok=True)
    with open(os.path.join(save_dir, save_name), 'w') as f:
        json.dump(scores, f, indent=2)
    return scores

def parse_args():
    parser = argparse.ArgumentParser(description='Inference with LoRA')
    parser.add_argument('--lora_weights', type=str, default=["None"],
                        nargs='+', help='path to your model file')
    parser.add_argument('--prompts', type=str, default=[],
                        nargs='+', help='prompts to try')
    parser.add_argument("--prompt_file", type=str, default=None, help="path to the prompt file")
    parser.add_argument("--prompt_file_key", type=str, default="prompts", help="key to the prompt file")
    parser.add_argument('--resolution', type=int, default=512, help='resolution of the image')
    parser.add_argument('--seed', type=int, default=None, help='seed for the random number generator')
    parser.add_argument("--start_noise", type=int, default=800, help="start noise")
    parser.add_argument("--from_scratch", default=False, action="store_true", help="from scratch")
    parser.add_argument("--ref_image_folder", type=str, default=None, help="folder containing reference images")
    parser.add_argument("--show", action="store_true", help="show the image")
    parser.add_argument("--batch_size", type=int, default=1, help="batch size")
    parser.add_argument("--scales", type=float, default=[0.,1.], nargs='+', help="scales to test")
    parser.add_argument("--train_method", type=str, default=None, help="train method")

    # parser.add_argument("--vae_path", type=str, default="CompVis/stable-diffusion-v1-4", help="Path to the VAE model.")
    # parser.add_argument("--text_encoder_path", type=str, default="CompVis/stable-diffusion-v1-4", help="Path to the text encoder model.")
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="rhfeiyang/art-free-diffusion-v1", help="Path to the pretrained model.")
    parser.add_argument("--unet_ckpt", default=None, type=str, help="Path to the unet checkpoint")
    parser.add_argument("--guidance_scale", type=float, default=5.0, help="guidance scale")
    parser.add_argument("--infer_mode", default="sks_art",  help="inference mode") #, choices=["style", "ori", "artist", "sks_art","Peter"]
    parser.add_argument("--save_dir", type=str, default="inference_output", help="save directory")
    parser.add_argument("--num_workers", type=int, default=4, help="number of workers")
    parser.add_argument("--no_load", action="store_true", help="no load the pre-inferred results")
    parser.add_argument("--infer_prompts", type=str, default=None, nargs="+", help="prompts to infer")
    parser.add_argument("--infer_images", type=str, default=None, nargs="+", help="images to infer")
    parser.add_argument("--rank", type=int, default=1, help="rank of the lora")
    parser.add_argument("--val_set", type=str, default="laion_pop500",  help="validation set")
    parser.add_argument("--folder_name", type=str, default=None, help="folder name")
    parser.add_argument("--scheduler_type",type=str, choices=["ddpm", "ddim", "pndm","lms"], default="ddpm", help="scheduler type")
    parser.add_argument("--infer_steps", type=int, default=50, help="inference steps")
    parser.add_argument("--weight_dtype", type=str, default="fp32", help="weight dtype")
    parser.add_argument("--custom_coco_cap", action="store_true", help="use custom coco caption")
    args = parser.parse_args()
    if args.infer_prompts is not None and len(args.infer_prompts) == 1 and os.path.isfile(args.infer_prompts[0]):
        if args.infer_prompts[0].endswith(".txt") and args.custom_coco_cap:
            args.infer_prompts = CustomCocoCaptions(custom_file=args.infer_prompts[0])
        elif args.infer_prompts[0].endswith(".txt"):
            with open(args.infer_prompts[0], 'r') as f:
                args.infer_prompts = f.readlines()
                args.infer_prompts = [prompt.strip() for prompt in args.infer_prompts]
        elif args.infer_prompts[0].endswith(".csv"):
            from custom_datasets.custom_caption import Caption_set
            caption_set = Caption_set(args.infer_prompts[0])
            args.infer_prompts = caption_set


    if args.infer_mode == "style":
        with open(os.path.join(args.ref_image_folder, "style_label.txt"), 'r') as f:
            args.style_label = f.readlines()[0].strip()
    elif args.infer_mode == "artist":
        with open(os.path.join(args.ref_image_folder, "style_label.txt"), 'r') as f:
            args.style_label = f.readlines()[0].strip()
            args.style_label = args.style_label.split(",")[0].strip()
    elif args.infer_mode == "ori":
        args.style_label = None
    else:
        args.style_label = args.infer_mode.replace("_", " ")
    if args.ref_image_folder is not None:
        args.ref_image_folder = os.path.join(args.ref_image_folder, "paintings")

    if args.start_noise < 0:
        args.from_scratch = True


    print(args.__dict__)
    return args


def main(args):
    lora_weights = args.lora_weights

    if len(lora_weights) == 1 and isinstance(lora_weights[0], str) and os.path.isdir(lora_weights[0]):
        lora_weights = glob.glob(os.path.join(lora_weights[0], "*.pt"))
        lora_weights=sorted(lora_weights, reverse=True)

    width = args.resolution
    height = args.resolution
    steps = args.infer_steps

    revision = None
    device = 'cuda'
    rank = args.rank
    if args.weight_dtype == "fp32":
        weight_dtype = torch.float32
    elif args.weight_dtype=="fp16":
        weight_dtype = torch.float16
    elif args.weight_dtype=="bf16":
        weight_dtype = torch.bfloat16

    modules = get_model(args.pretrained_model_name_or_path, unet_ckpt=args.unet_ckpt, revision=revision, variant=None, lora_path=None, weight_dtype=weight_dtype, device=device, )
    if args.scheduler_type == "pndm":
        noise_scheduler = PNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")

    elif args.scheduler_type == "ddpm":
        noise_scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
    elif args.scheduler_type == "ddim":
        noise_scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            prediction_type="epsilon",
        )
    elif args.scheduler_type == "lms":
        noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085,
                             beta_end=0.012,
                             beta_schedule="scaled_linear",
                             num_train_timesteps=1000)
    else:
        raise ValueError("Unknown scheduler type")
    cache=EasyDict()
    cache.modules = modules

    unet = modules["unet"]
    vae = modules["vae"]
    text_encoder = modules["text_encoder"]
    tokenizer = modules["tokenizer"]

    unet.requires_grad_(False)

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    ## dataloader
    dataloader = get_validation_dataloader(infer_prompts=args.infer_prompts, infer_images=args.infer_images,
                                           resolution=args.resolution,
                                           batch_size=args.batch_size, num_workers=args.num_workers,
                                           val_set=args.val_set)


    for lora_weight in lora_weights:
        print(f"Testing {lora_weight}")
        # for different seeds on same prompt
        seed = args.seed

        network_ret = get_lora_network(unet, lora_weight, train_method=args.train_method, rank=rank, alpha=1.0, device=device, weight_dtype=weight_dtype)
        network = network_ret["network"]
        train_method = network_ret["train_method"]
        if args.save_dir is not None:
            save_dir = args.save_dir
            if args.style_label is not None:
                save_dir = os.path.join(save_dir, f"{args.style_label.replace(' ', '_')}")
            else:
                save_dir = os.path.join(save_dir, f"ori/{args.start_noise}")
        else:
            if args.folder_name is not None:
                folder_name = args.folder_name
            else:
                folder_name = "validation" if args.infer_prompts is None else "validation_prompts"
            save_dir = os.path.join(os.path.dirname(lora_weight), f"{folder_name}/{train_method}", os.path.basename(lora_weight).replace('.pt','').split('_')[-1])
        if args.infer_prompts is None:
            save_dir = os.path.join(save_dir, f"{args.val_set}")

        infer_config = f"{args.scheduler_type}{args.infer_steps}_{args.weight_dtype}_guidance{args.guidance_scale}"
        save_dir = os.path.join(save_dir, infer_config)
        os.makedirs(save_dir, exist_ok=True)
        if args.from_scratch:
            save_dir = os.path.join(save_dir, "from_scratch")
        else:
            save_dir = os.path.join(save_dir, "transfer")
        save_dir = os.path.join(save_dir, f"start{args.start_noise}")
        os.makedirs(save_dir, exist_ok=True)
        with open(os.path.join(save_dir, "infer_args.yaml"), 'w') as f:
            yaml.dump(vars(args), f)
        # save code
        code_dir = os.path.join(save_dir, "code")
        os.makedirs(code_dir, exist_ok=True)
        current_file = os.path.basename(__file__)
        shutil.copy(__file__, os.path.join(code_dir, current_file))
        with torch.no_grad():
            pred_images, prompts = inference(network, tokenizer, text_encoder, vae, unet, noise_scheduler, dataloader, height, width,
                                    args.scales, save_dir, seed, weight_dtype, device, args.batch_size, steps, guidance_scale=args.guidance_scale,
                                    start_noise=args.start_noise, show=args.show, style_prompt=args.style_label, no_load=args.no_load,
                                    from_scratch=args.from_scratch)

            if args.ref_image_folder is not None:
                flush()
                print("Calculating metrics")
                infer_metric(args.ref_image_folder, pred_images, save_dir, args.start_noise)

if __name__ == "__main__":
    args = parse_args()
    main(args)