Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,939 Bytes
262b155 9659375 262b155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Authors: Hui Ren (rhfeiyang.github.io)
import os
import gradio as gr
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt
import torch
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("rhfeiyang/art-free-diffusion-v1",).to(device)
from inference import get_lora_network, inference, get_validation_dataloader
lora_map = {
"None": "None",
"Andre Derain": "andre-derain_subset1",
"Vincent van Gogh": "van_gogh_subset1",
"Andy Warhol": "andy_subset1",
"Walter Battiss": "walter-battiss_subset2",
"Camille Corot": "camille-corot_subset1",
"Claude Monet": "monet_subset2",
"Pablo Picasso": "picasso_subset1",
"Jackson Pollock": "jackson-pollock_subset1",
"Gerhard Richter": "gerhard-richter_subset1",
"M.C. Escher": "m.c.-escher_subset1",
"Albert Gleizes": "albert-gleizes_subset1",
"Hokusai": "katsushika-hokusai_subset1",
"Wassily Kandinsky": "kandinsky_subset1",
"Gustav Klimt": "klimt_subset3",
"Roy Lichtenstein": "roy-lichtenstein_subset1",
"Henri Matisse": "henri-matisse_subset1",
"Joan Miro": "joan-miro_subset2",
}
def demo_inference_gen(adapter_choice:str, prompt:str, samples:int=1,seed:int=0, steps=50, guidance_scale=7.5):
adapter_path = lora_map[adapter_choice]
if adapter_path not in [None, "None"]:
adapter_path = f"data/Art_adapters/{adapter_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"
prompts = [prompt]*samples
infer_loader = get_validation_dataloader(prompts)
network = get_lora_network(pipe.unet, adapter_path)["network"]
pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
height=512, width=512, scales=[1.0],
save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale,
start_noise=-1, show=False, style_prompt="sks art", no_load=True,
from_scratch=True)[0][1.0]
return pred_images
def demo_inference_stylization(adapter_path:str, prompts:list, image:list, start_noise=800,seed:int=0):
infer_loader = get_validation_dataloader(prompts, image)
network = get_lora_network(pipe.unet, adapter_path,"all_up")["network"]
pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader,
height=512, width=512, scales=[0.,1.],
save_dir=None, seed=seed,steps=20, guidance_scale=7.5,
start_noise=start_noise, show=True, style_prompt="sks art", no_load=True,
from_scratch=False)
return pred_images
# def infer(prompt, samples, steps, scale, seed):
# generator = torch.Generator(device=device).manual_seed(seed)
# images_list = pipe( # type: ignore
# [prompt] * samples,
# num_inference_steps=steps,
# guidance_scale=scale,
# generator=generator,
# )
# images = []
# safe_image = Image.open(r"data/unsafe.png")
# print(images_list)
# for i, image in enumerate(images_list["images"]): # type: ignore
# if images_list["nsfw_content_detected"][i]: # type: ignore
# images.append(safe_image)
# else:
# images.append(image)
# return images
block = gr.Blocks()
# Direct infer
with block:
with gr.Group():
gr.Markdown(" # Art-Free Diffusion Demo")
with gr.Row():
text = gr.Textbox(
label="Enter your prompt",
max_lines=2,
placeholder="Enter your prompt",
container=False,
value="Park with cherry blossom trees, picnicker’s and a clear blue pond.",
)
btn = gr.Button("Run", scale=0)
gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
columns=[2],
)
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Row(elem_id="advanced-options"):
adapter_choice = gr.Dropdown(
label="Choose adapter",
choices=["None", "Andre Derain","Vincent van Gogh","Andy Warhol", "Walter Battiss",
"Camille Corot", "Claude Monet", "Pablo Picasso",
"Jackson Pollock", "Gerhard Richter", "M.C. Escher",
"Albert Gleizes", "Hokusai", "Wassily Kandinsky", "Gustav Klimt", "Roy Lichtenstein",
"Henri Matisse", "Joan Miro"
],
value="None"
)
# print(adapter_choice[0])
# lora_path = lora_map[adapter_choice.value]
# if lora_path is not None:
# lora_path = f"data/Art_adapters/{lora_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt"
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
print(scale)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
gr.on([text.submit, btn.click], demo_inference_gen, inputs=[adapter_choice, text, samples, seed, steps, scale], outputs=gallery)
advanced_button.click(
None,
[],
text,
)
block.launch() |