# Authors: Hui Ren (rhfeiyang.github.io) import os import gradio as gr from diffusers import DiffusionPipeline import matplotlib.pyplot as plt import torch from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("rhfeiyang/art-free-diffusion-v1",).to(device) from inference import get_lora_network, inference, get_validation_dataloader lora_map = { "None": "None", "Andre Derain": "andre-derain_subset1", "Vincent van Gogh": "van_gogh_subset1", "Andy Warhol": "andy_subset1", "Walter Battiss": "walter-battiss_subset2", "Camille Corot": "camille-corot_subset1", "Claude Monet": "monet_subset2", "Pablo Picasso": "picasso_subset1", "Jackson Pollock": "jackson-pollock_subset1", "Gerhard Richter": "gerhard-richter_subset1", "M.C. Escher": "m.c.-escher_subset1", "Albert Gleizes": "albert-gleizes_subset1", "Hokusai": "katsushika-hokusai_subset1", "Wassily Kandinsky": "kandinsky_subset1", "Gustav Klimt": "klimt_subset3", "Roy Lichtenstein": "roy-lichtenstein_subset1", "Henri Matisse": "henri-matisse_subset1", "Joan Miro": "joan-miro_subset2", } def demo_inference_gen(adapter_choice:str, prompt:str, samples:int=1,seed:int=0, steps=50, guidance_scale=7.5): adapter_path = lora_map[adapter_choice] if adapter_path not in [None, "None"]: adapter_path = f"data/Art_adapters/{adapter_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt" prompts = [prompt]*samples infer_loader = get_validation_dataloader(prompts) network = get_lora_network(pipe.unet, adapter_path)["network"] pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader, height=512, width=512, scales=[1.0], save_dir=None, seed=seed,steps=steps, guidance_scale=guidance_scale, start_noise=-1, show=False, style_prompt="sks art", no_load=True, from_scratch=True)[0][1.0] return pred_images def demo_inference_stylization(adapter_path:str, prompts:list, image:list, start_noise=800,seed:int=0): infer_loader = get_validation_dataloader(prompts, image) network = get_lora_network(pipe.unet, adapter_path,"all_up")["network"] pred_images = inference(network, pipe.tokenizer, pipe.text_encoder, pipe.vae, pipe.unet, pipe.scheduler, infer_loader, height=512, width=512, scales=[0.,1.], save_dir=None, seed=seed,steps=20, guidance_scale=7.5, start_noise=start_noise, show=True, style_prompt="sks art", no_load=True, from_scratch=False) return pred_images # def infer(prompt, samples, steps, scale, seed): # generator = torch.Generator(device=device).manual_seed(seed) # images_list = pipe( # type: ignore # [prompt] * samples, # num_inference_steps=steps, # guidance_scale=scale, # generator=generator, # ) # images = [] # safe_image = Image.open(r"data/unsafe.png") # print(images_list) # for i, image in enumerate(images_list["images"]): # type: ignore # if images_list["nsfw_content_detected"][i]: # type: ignore # images.append(safe_image) # else: # images.append(image) # return images block = gr.Blocks() # Direct infer with block: with gr.Group(): gr.Markdown(" # Art-Free Diffusion Demo") with gr.Row(): text = gr.Textbox( label="Enter your prompt", max_lines=2, placeholder="Enter your prompt", container=False, value="Park with cherry blossom trees, picnicker’s and a clear blue pond.", ) btn = gr.Button("Run", scale=0) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", columns=[2], ) advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") with gr.Row(elem_id="advanced-options"): adapter_choice = gr.Dropdown( label="Choose adapter", choices=["None", "Andre Derain","Vincent van Gogh","Andy Warhol", "Walter Battiss", "Camille Corot", "Claude Monet", "Pablo Picasso", "Jackson Pollock", "Gerhard Richter", "M.C. Escher", "Albert Gleizes", "Hokusai", "Wassily Kandinsky", "Gustav Klimt", "Roy Lichtenstein", "Henri Matisse", "Joan Miro" ], value="None" ) # print(adapter_choice[0]) # lora_path = lora_map[adapter_choice.value] # if lora_path is not None: # lora_path = f"data/Art_adapters/{lora_path}/adapter_alpha1.0_rank1_all_up_1000steps.pt" samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1) scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 ) print(scale) seed = gr.Slider( label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True, ) gr.on([text.submit, btn.click], demo_inference_gen, inputs=[adapter_choice, text, samples, seed, steps, scale], outputs=gallery) advanced_button.click( None, [], text, ) block.launch()