File size: 5,392 Bytes
32c9084
 
 
a906ccd
32c9084
35ef636
32c9084
a906ccd
0e5f8d9
 
32c9084
a906ccd
d19d235
 
 
 
 
 
 
 
9e19736
c9d9479
9e19736
 
c9d9479
a906ccd
1cbfec0
2c0ab44
a906ccd
dd63333
a906ccd
 
f7d4880
9e19736
 
 
 
 
 
 
 
 
 
a906ccd
9e19736
 
 
 
 
 
 
 
f35d308
 
 
 
 
 
 
 
 
 
 
d19d235
 
 
 
 
 
 
f35d308
 
2c5fe61
 
 
 
 
 
 
f35d308
8cf4aa8
492c1a0
f35d308
 
 
 
 
a4dab2d
2c5fe61
 
 
 
 
492c1a0
 
 
 
2c5fe61
 
 
dbdc1d5
f35d308
8cf4aa8
 
 
 
 
 
 
 
 
 
 
f35d308
8cf4aa8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)

import streamlit as st
from transformers import pipeline
import ast

# Load the summarization model
#summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")  # smaller version of the model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Default article text
# DEFAULT_ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York.
# A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband.
# Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other.
# In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage.
# Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the
# 2010 marriage license application, according to court documents.
# """

# DEFAULT_STATEMENT = ""

# # Create a text area for user input
# STATEMENT = st.sidebar.text_area('Enter Article (String)', DEFAULT_ARTICLE, height=150)

# Define the summarization function
def summarize(txt):
    st.write('\n\n')
    st.write(txt[:100])  # Display the first 100 characters of the article
    st.write('--------------------------------------------------------------')
    summary = summarizer(txt, max_length=130, min_length=30, do_sample=False)
    st.write(summary[0]['summary_text'])

DEFAULT_STATEMENT = ""
# Create a text area for user input
STATEMENT = st.sidebar.text_area('Enter Statement (String or List of Strings)', DEFAULT_STATEMENT, height=150)

# Enable the button only if there is text in the SENTIMENT variable
if STATEMENT:
    if st.sidebar.button('Summarize Statement'):
        # Call your Summarize function here
        #st.write(f"Summarizing: {STATEMENT}")
        summarize(STATEMENT)  # Directly pass the STATEMENT
else:
    st.sidebar.button('Summarize Statement', disabled=True)
    st.warning('πŸ‘ˆ Please enter Statement!')    
    
# # Create a button and trigger the summarize function when clicked
# if st.sidebar.button('Summarize Article'):
#     summarize(ARTICLE)
# else:
#     st.warning('πŸ‘ˆ Please enter Article!')



#################################


# Initialize the sentiment analysis pipeline
# No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english
sentiment_pipeline = pipeline("sentiment-analysis")

# Default article text
# DEFAULT_SENTIMENT = """[
#     "I'm so happy today!",
#     "This is the worst experience ever.",
#     "It's a decent product, nothing special."
# ]"""

# DEFAULT_SENTIMENT = "I'm so happy today!"


def is_valid_list_string(string):
    try:
        result = ast.literal_eval(string)
        return isinstance(result, list)
    except (ValueError, SyntaxError):
        return False
        
# Define the summarization function
def analyze(txt):
    
    st.write('\n\n')
    #st.write(txt[:100])  # Display the first 100 characters of the article
    st.write('--------------------------------------------------------------')
    
    # Display the results
    #if type(txt_converted) == 'list':
    #if isinstance(txt_converted, list):
    if is_valid_list_string(txt):        
        txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list
        # Perform Hugging sentiment analysis on multiple texts
        results = sentiment_pipeline(txt_converted)        
        for i, text in enumerate(txt_converted):
            st.write(f"Text: {text}")
            st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n")
    else:
        # Perform Hugging sentiment analysis on multiple texts
        results = sentiment_pipeline(txt)        
        st.write(f"Text: {txt}")
        st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n")


DEFAULT_SENTIMENT = ""
# Create a text area for user input
SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150)

# Enable the button only if there is text in the SENTIMENT variable
if SENTIMENT:
    if st.sidebar.button('Analyze Sentiment'):
        # Call your Analyze function here
        #st.write(f"Summarizing: {SENTIMENT}")
        analyze(SENTIMENT)  # Directly pass the SENTIMENT
else:
    st.sidebar.button('Summarize Sentiment', disabled=True)
    st.warning('πŸ‘ˆ Please enter Sentiment!')    
    
# # Create a button and trigger the summarize function when clicked
# if st.sidebar.button('Summarize Sentiment'):
#     #ast.literal_eval() is a function in Python that safely evaluates a string containing a valid Python expression, 
#     #such as lists, dictionaries, tuples, sets, integers, and floats. It parses the string and returns the corresponding 
#     #Python object, without executing any arbitrary code, which makes it safer than using eval().    
#     #summarize(str(SENTIMENT)) #explicitly change SENTIMENT to string so that even when ypu provide unquoted string, it still works
#     analyze(SENTIMENT)  # Directly pass the SENTIMENT
# else:
#     st.warning('πŸ‘ˆ Please enter Sentiment!')