File size: 4,585 Bytes
ec929e1
 
 
32c9084
 
 
a906ccd
32c9084
35ef636
32c9084
ec929e1
b1eb8cd
 
 
 
 
 
f54fc6b
b1eb8cd
f54fc6b
b1eb8cd
f54fc6b
 
 
b1eb8cd
f54fc6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1eb8cd
ec929e1
 
a906ccd
0e5f8d9
 
32c9084
a906ccd
ec929e1
2c0ab44
f1b2a26
 
0262183
a906ccd
f7d4880
9e19736
 
0262183
9e19736
 
 
 
 
ec929e1
a906ccd
9e19736
 
 
f35d308
ec929e1
f35d308
 
 
 
 
2c5fe61
 
 
 
 
 
 
f35d308
ec929e1
492c1a0
f35d308
 
f1b2a26
f35d308
 
2c5fe61
 
 
 
492c1a0
 
 
 
2c5fe61
 
 
dbdc1d5
f35d308
8cf4aa8
 
 
 
 
 
 
 
ec929e1
f35d308
ec929e1
8cf4aa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Natural Language Tools
# Richard Orama - September 2024

#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)

import streamlit as st
from transformers import pipeline
import ast


################ CHAT BOT #################

# Load the GPT model
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")

# Streamlit chat UI
#st.title("GPT-3 Chatbox")

# user_input = st.text_input("You: ", "Hello, how are you?")

# if user_input:
#     response = generator(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
#     st.write(f"GPT-3: {response}")

# Define the summarization function
def chat(txt):
    st.write('\n\n')
    #st.write(txt[:100])  # Display the first 100 characters of the article
    #st.write('--------------------------------------------------------------')
    #summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
    #st.write(summary[0]['summary_text'])
    response = generator(txt, max_length=100, num_return_sequences=1)[0]['generated_text']
    st.write(f"GPT-3: {response}")    
    
DEFAULT_CHAT = ""
# Create a text area for user input
CHAT = st.sidebar.text_area('Enter Chat (String)', DEFAULT_CHAT, height=150)

# Enable the button only if there is text in the CHAT variable
if CHAT:
    if st.sidebar.button('Chat Statement'):
        # Call your Summarize function here
        chat(CHAT)  # Directly pass the your
else:
    st.sidebar.button('Summarize Statement', disabled=True)
    st.warning('πŸ‘ˆ Please enter Statement!')    
    
    
################ STATEMENT SUMMARIZATION #################

# Load the summarization model
#summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")  # smaller version of the model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Define the summarization function
def summarize_statement(txt):
    st.write('\n\n')
    #st.write(txt[:100])  # Display the first 100 characters of the article
    #st.write('--------------------------------------------------------------')
    summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
    st.write(summary[0]['summary_text'])

DEFAULT_STATEMENT = ""
# Create a text area for user input
STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150)

# Enable the button only if there is text in the SENTIMENT variable
if STATEMENT:
    if st.sidebar.button('Summarize Statement'):
        # Call your Summarize function here
        summarize_statement(STATEMENT)  # Directly pass the STATEMENT
else:
    st.sidebar.button('Summarize Statement', disabled=True)
    st.warning('πŸ‘ˆ Please enter Statement!')    
    

################ SENTIMENT ANALYSIS #################

# Initialize the sentiment analysis pipeline
# No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english
sentiment_pipeline = pipeline("sentiment-analysis")

def is_valid_list_string(string):
    try:
        result = ast.literal_eval(string)
        return isinstance(result, list)
    except (ValueError, SyntaxError):
        return False
        
# Define the summarization function
def analyze_sentiment(txt):
    
    st.write('\n\n')
    #st.write(txt[:100])  # Display the first 100 characters of the article
    #st.write('--------------------------------------------------------------')
    
    # Display the results
    if is_valid_list_string(txt):        
        txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list
        # Perform Hugging sentiment analysis on multiple texts
        results = sentiment_pipeline(txt_converted)        
        for i, text in enumerate(txt_converted):
            st.write(f"Text: {text}")
            st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n")
    else:
        # Perform Hugging sentiment analysis on multiple texts
        results = sentiment_pipeline(txt)        
        st.write(f"Text: {txt}")
        st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n")


DEFAULT_SENTIMENT = ""
# Create a text area for user input
SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150)

# Enable the button only if there is text in the SENTIMENT variable
if SENTIMENT:
    if st.sidebar.button('Analyze Sentiment'):
        analyze_sentiment(SENTIMENT)  # Directly pass the SENTIMENT
else:
    st.sidebar.button('Analyze Sentiment', disabled=True)
    st.warning('πŸ‘ˆ Please enter Sentiment!')