# Natural Language Tools | |
# Richard Orama - September 2024 | |
#x = st.slider('Select a value') | |
#st.write(x, 'squared is', x * x) | |
import streamlit as st | |
from transformers import pipeline | |
import ast | |
################ CHAT BOT ################# | |
# Load the GPT model | |
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B") | |
# Streamlit chat UI | |
#st.title("GPT-3 Chatbox") | |
# user_input = st.text_input("You: ", "Hello, how are you?") | |
# if user_input: | |
# response = generator(user_input, max_length=100, num_return_sequences=1)[0]['generated_text'] | |
# st.write(f"GPT-3: {response}") | |
# Define the summarization function | |
def chat(txt): | |
st.write('\n\n') | |
#st.write(txt[:100]) # Display the first 100 characters of the article | |
#st.write('--------------------------------------------------------------') | |
#summary = summarizer(txt, max_length=500, min_length=30, do_sample=False) | |
#st.write(summary[0]['summary_text']) | |
response = generator(txt, max_length=500, num_return_sequences=1)[0]['generated_text'] | |
st.write(f"GPT-3: {response}") | |
DEFAULT_CHAT = "" | |
# Create a text area for user input | |
CHAT = st.sidebar.text_area('Enter Chat (String)', DEFAULT_CHAT, height=150) | |
# Enable the button only if there is text in the CHAT variable | |
if CHAT: | |
if st.sidebar.button('Chat Statement'): | |
# Call your Summarize function here | |
chat(CHAT) # Directly pass the your | |
else: | |
st.sidebar.button('Chat Statement', disabled=True) | |
st.warning('π Please enter Chat!') | |
################ STATEMENT SUMMARIZATION ################# | |
# Load the summarization model | |
#summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Define the summarization function | |
def summarize_statement(txt): | |
st.write('\n\n') | |
#st.write(txt[:100]) # Display the first 100 characters of the article | |
#st.write('--------------------------------------------------------------') | |
summary = summarizer(txt, max_length=500, min_length=30, do_sample=False) | |
st.write(summary[0]['summary_text']) | |
DEFAULT_STATEMENT = "" | |
# Create a text area for user input | |
STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150) | |
# Enable the button only if there is text in the SENTIMENT variable | |
if STATEMENT: | |
if st.sidebar.button('Summarize Statement'): | |
# Call your Summarize function here | |
summarize_statement(STATEMENT) # Directly pass the STATEMENT | |
else: | |
st.sidebar.button('Summarize Statement', disabled=True) | |
st.warning('π Please enter Statement!') | |
################ SENTIMENT ANALYSIS ################# | |
# Initialize the sentiment analysis pipeline | |
# No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
def is_valid_list_string(string): | |
try: | |
result = ast.literal_eval(string) | |
return isinstance(result, list) | |
except (ValueError, SyntaxError): | |
return False | |
# Define the summarization function | |
def analyze_sentiment(txt): | |
st.write('\n\n') | |
#st.write(txt[:100]) # Display the first 100 characters of the article | |
#st.write('--------------------------------------------------------------') | |
# Display the results | |
if is_valid_list_string(txt): | |
txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list | |
# Perform Hugging sentiment analysis on multiple texts | |
results = sentiment_pipeline(txt_converted) | |
for i, text in enumerate(txt_converted): | |
st.write(f"Text: {text}") | |
st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n") | |
else: | |
# Perform Hugging sentiment analysis on multiple texts | |
results = sentiment_pipeline(txt) | |
st.write(f"Text: {txt}") | |
st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n") | |
DEFAULT_SENTIMENT = "" | |
# Create a text area for user input | |
SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150) | |
# Enable the button only if there is text in the SENTIMENT variable | |
if SENTIMENT: | |
if st.sidebar.button('Analyze Sentiment'): | |
analyze_sentiment(SENTIMENT) # Directly pass the SENTIMENT | |
else: | |
st.sidebar.button('Analyze Sentiment', disabled=True) | |
st.warning('π Please enter Sentiment!') | |