#x = st.slider('Select a value') | |
#st.write(x, 'squared is', x * x) | |
import streamlit as st | |
from transformers import pipeline | |
import ast | |
# Load the summarization model | |
#summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Default article text | |
# DEFAULT_ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. | |
# A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband. | |
# Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other. | |
# In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage. | |
# Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the | |
# 2010 marriage license application, according to court documents. | |
# """ | |
DEFAULT_ARTICLE = "" | |
# Create a text area for user input | |
ARTICLE = st.sidebar.text_area('Enter Article (String)', DEFAULT_ARTICLE, height=150) | |
# Define the summarization function | |
def summarize(txt): | |
st.write('\n\n') | |
st.write(txt[:100]) # Display the first 100 characters of the article | |
st.write('--------------------------------------------------------------') | |
summary = summarizer(txt, max_length=130, min_length=30, do_sample=False) | |
st.write(summary[0]['summary_text']) | |
# Create a button and trigger the summarize function when clicked | |
if st.sidebar.button('Summarize Article'): | |
summarize(ARTICLE) | |
else: | |
st.warning('π Please enter Article!') | |
################################# | |
# Initialize the sentiment analysis pipeline | |
# No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
# Default article text | |
# DEFAULT_SENTIMENT = """[ | |
# "I'm so happy today!", | |
# "This is the worst experience ever.", | |
# "It's a decent product, nothing special." | |
# ]""" | |
# DEFAULT_SENTIMENT = "I'm so happy today!" | |
def is_valid_list_string(string): | |
try: | |
result = ast.literal_eval(string) | |
return isinstance(result, list) | |
except (ValueError, SyntaxError): | |
return False | |
# Define the summarization function | |
def analyze(txt): | |
st.write('\n\n') | |
#st.write(txt[:100]) # Display the first 100 characters of the article | |
st.write('--------------------------------------------------------------') | |
# Display the results | |
#if type(txt_converted) == 'list': | |
#if isinstance(txt_converted, list): | |
if is_valid_list_string(txt): | |
txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list | |
# Perform Hugging sentiment analysis on multiple texts | |
results = sentiment_pipeline(txt_converted) | |
for i, text in enumerate(txt_converted): | |
st.write(f"Text: {text}") | |
st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n") | |
else: | |
# Perform Hugging sentiment analysis on multiple texts | |
results = sentiment_pipeline(txt) | |
st.write(f"Text: {txt}") | |
st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n") | |
DEFAULT_SENTIMENT = "" | |
# Create a text area for user input | |
SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150) | |
# Enable the button only if there is text in the SENTIMENT variable | |
if SENTIMENT: | |
if st.sidebar.button('Analyze Sentiment'): | |
# Call your Analyze function here | |
#st.write(f"Summarizing: {SENTIMENT}") | |
analyze(SENTIMENT) # Directly pass the SENTIMENT | |
else: | |
st.sidebar.button('Summarize Sentiment', disabled=True) | |
st.warning('π Please enter Sentiment!') | |
# # Create a button and trigger the summarize function when clicked | |
# if st.sidebar.button('Summarize Sentiment'): | |
# #ast.literal_eval() is a function in Python that safely evaluates a string containing a valid Python expression, | |
# #such as lists, dictionaries, tuples, sets, integers, and floats. It parses the string and returns the corresponding | |
# #Python object, without executing any arbitrary code, which makes it safer than using eval(). | |
# #summarize(str(SENTIMENT)) #explicitly change SENTIMENT to string so that even when ypu provide unquoted string, it still works | |
# analyze(SENTIMENT) # Directly pass the SENTIMENT | |
# else: | |
# st.warning('π Please enter Sentiment!') |