richardorama's picture
Update app.py
de19eb1 verified
raw
history blame
7.67 kB
# Natural Language Tools
# Richard Orama - September 2024
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
import streamlit as st
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel
import ast
st.title("Assorted Language Tools - AI Craze")
################ STATEMENT SUMMARIZATION #################
# Load the summarization model
#summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Define the summarization function
def summarize_statement(txt):
st.write('\n\n')
#st.write(txt[:100]) # Display the first 100 characters of the article
#st.write('--------------------------------------------------------------')
summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
st.write(summary[0]['summary_text'])
DEFAULT_STATEMENT = ""
# Create a text area for user input
STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150)
# Enable the button only if there is text in the SENTIMENT variable
if STATEMENT:
if st.sidebar.button('Summarize Statement'):
# Call your Summarize function here
summarize_statement(STATEMENT) # Directly pass the STATEMENT
else:
st.sidebar.button('Summarize Statement', disabled=True)
st.warning('πŸ‘ˆ Please enter Statement!')
################ SENTIMENT ANALYSIS #################
# Initialize the sentiment analysis pipeline
# No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english
sentiment_pipeline = pipeline("sentiment-analysis")
def is_valid_list_string(string):
try:
result = ast.literal_eval(string)
return isinstance(result, list)
except (ValueError, SyntaxError):
return False
# Define the summarization function
def analyze_sentiment(txt):
st.write('\n\n')
#st.write(txt[:100]) # Display the first 100 characters of the article
#st.write('--------------------------------------------------------------')
# Display the results
if is_valid_list_string(txt):
txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list
# Perform Hugging sentiment analysis on multiple texts
results = sentiment_pipeline(txt_converted)
for i, text in enumerate(txt_converted):
st.write(f"Text: {text}")
st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n")
else:
# Perform Hugging sentiment analysis on multiple texts
results = sentiment_pipeline(txt)
st.write(f"Text: {txt}")
st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n")
DEFAULT_SENTIMENT = ""
# Create a text area for user input
SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150)
# Enable the button only if there is text in the SENTIMENT variable
if SENTIMENT:
if st.sidebar.button('Analyze Sentiment'):
analyze_sentiment(SENTIMENT) # Directly pass the SENTIMENT
else:
st.sidebar.button('Analyze Sentiment', disabled=True)
st.warning('πŸ‘ˆ Please enter Sentiment!')
# ################ CHAT BOT #################
# # Load the GPT model
# generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
# # Streamlit chat UI
# #st.title("GPT-3 Chatbox")
# # user_input = st.text_input("You: ", "Hello, how are you?")
# # if user_input:
# # response = generator(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
# # st.write(f"GPT-3: {response}")
# # Define the summarization function
# def chat(txt):
# st.write('\n\n')
# #st.write(txt[:100]) # Display the first 100 characters of the article
# #st.write('--------------------------------------------------------------')
# #summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
# #st.write(summary[0]['summary_text'])
# response = generator(txt, max_length=500, num_return_sequences=1)[0]['generated_text']
# st.write(f"GPT-3: {response}")
# DEFAULT_CHAT = ""
# # Create a text area for user input
# CHAT = st.sidebar.text_area('Enter Chat (String)', DEFAULT_CHAT, height=150)
# # Enable the button only if there is text in the CHAT variable
# if CHAT:
# if st.sidebar.button('Chat Statement'):
# # Call your Summarize function here
# chat(CHAT) # Directly pass the your
# else:
# st.sidebar.button('Chat Statement', disabled=True)
# st.warning('πŸ‘ˆ Please enter Chat!')
# # Load pre-trained GPT-2 model and tokenizer
# model_name = "gpt-3.5-turbo" # "gpt2" # Use "gpt-3.5-turbo" or another model from Hugging Face if needed
# model = GPT2LMHeadModel.from_pretrained(model_name)
# tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# # Initialize the text generation pipeline
# gpt_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
# # Streamlit UI
# st.markdown("<h3 style='text-align: center; font-size: 20px;'>Chat with GPT</h3>", unsafe_allow_html=True)
# if 'conversation' not in st.session_state:
# st.session_state.conversation = ""
# def chat_with_gpt(user_input):
# # Append user input to the conversation
# st.session_state.conversation += f"User: {user_input}\n"
# # Generate response
# response = gpt_pipeline(user_input, max_length=100, num_return_sequences=1)[0]['generated_text']
# response_text = response.replace(user_input, '') # Strip the user input part from response
# # Append GPT's response to the conversation
# st.session_state.conversation += f"GPT: {response_text}\n"
# return response_text
# # Text input for user query
# user_input = st.text_input("You:", "")
# if st.button("Send"):
# if user_input:
# chat_with_gpt(user_input)
# # Display conversation history
# st.text_area("Conversation", value=st.session_state.conversation, height=400)
#############
# # LLaMA 7B model from Hugging Face
# # MODEL_NAME = "huggyllama/llama-7b" # Example of a LLaMA model
# # Try this OpenAssistant model available on Hugging Face
# MODEL_NAME = "OpenAssistant/oasst-sft-1-pythia-12b" # Example of an OpenAssistant model
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# # Load the model and tokenizer (OpenAssistant or LLaMA)
# MODEL_NAME = "OpenAssistant/oasst-sft-1-pythia-12b" # Replace with "huggyllama/llama-7b" for LLaMA
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
# # Streamlit UI for input
# st.markdown("<h3 style='text-align: center; font-size: 20px;'>Chat with OpenAssistant/LLaMA</h3>", unsafe_allow_html=True)
# # Input text area
# user_input = st.text_area("You:", "", height=150)
# if st.button('Generate Response'):
# if user_input:
# # Tokenize the input and generate response
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(**inputs, max_length=150)
# # Decode the generated response
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Display the model's response
# st.write("Assistant: ", response)
# else:
# st.warning('Please enter some text to get a response!')
# ################ END #################
# Add a footnote at the bottom
st.markdown("---") # Horizontal line to separate content from footnote
st.markdown("Orama's AI Craze")