richardorama commited on
Commit
4dd480b
1 Parent(s): ae62e8e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -1
app.py CHANGED
@@ -10,7 +10,44 @@ import ast
10
 
11
  st.title("Assorted Language Tools - AI Craze")
12
 
13
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ################ STATEMENT SUMMARIZATION #################
15
 
16
  # Load the summarization model
 
10
 
11
  st.title("Assorted Language Tools - AI Craze")
12
 
13
+
14
+
15
+ ##########################################################
16
+
17
+
18
+ import streamlit as st
19
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
20
+
21
+ # Load the LLaMA summarization model and tokenizer
22
+ MODEL_NAME = "pszemraj/llama-7b-summarization" # Example of a LLaMA model fine-tuned for summarization
23
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
24
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
25
+
26
+ # Streamlit UI for input
27
+ st.title("Text Summarization with LLaMA")
28
+
29
+ # Input text area for the article
30
+ article = st.text_area("Enter the text you want to summarize", height=300)
31
+
32
+ # Summarize button
33
+ if st.button("Summarize"):
34
+ if article:
35
+ # Tokenize input article
36
+ inputs = tokenizer(article, return_tensors="pt", truncation=True, padding="longest", max_length=1024)
37
+
38
+ # Generate summary
39
+ summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
40
+
41
+ # Decode summary
42
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
43
+
44
+ # Display the summary
45
+ st.write("**Summary:**")
46
+ st.write(summary)
47
+ else:
48
+ st.warning("Please enter some text to summarize!")
49
+
50
+
51
  ################ STATEMENT SUMMARIZATION #################
52
 
53
  # Load the summarization model