richardorama commited on
Commit
9a96f1a
β€’
1 Parent(s): f79a195

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -52
app.py CHANGED
@@ -14,7 +14,7 @@ st.markdown("<h3 style='text-align: center; font-size: 16px;'>Simply Assorted La
14
  st.markdown("<h3 style='text-align: center; font-size: 20px; color: blue;'>Orama's AI Craze</h3>", unsafe_allow_html=True)
15
 
16
 
17
- ################ SENTIMENT ANALYSIS - side bar #################
18
 
19
  # Initialize the sentiment analysis pipeline
20
  # No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english
@@ -48,7 +48,7 @@ def analyze_sentiment(txt):
48
  st.sidebar.write(f"Text: {txt}")
49
  st.sidebar.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n")
50
 
51
- st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Sentiment Analysis</h3>", unsafe_allow_html=True)
52
  DEFAULT_SENTIMENT = ""
53
  # Create a text area for user input
54
  SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150)
@@ -62,52 +62,14 @@ else:
62
  #st.warning('πŸ‘ˆ Please enter Sentiment!')
63
 
64
 
65
-
66
- ################ STATEMENT SUMMARIZATION - main area #################
67
-
68
-
69
- import streamlit as st
70
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
71
-
72
- # Load the summarization model and tokenizer
73
- MODEL_NAME = "facebook/bart-large-cnn" # A commonly used summarization model
74
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
75
- model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
76
-
77
- # Streamlit UI for input
78
- st.markdown("<h3 style='text-align: center; font-size: 20px; background-color: white; color: black;'>Text Summarization with BART</h3>", unsafe_allow_html=True)
79
-
80
- # Input text area for the article
81
- article = st.text_area("Enter text to summarize", height=300)
82
-
83
- # Summarize button
84
- if st.button("Summarize"):
85
- if article:
86
- # Tokenize input article
87
- inputs = tokenizer(article, return_tensors="pt", truncation=True, padding="longest", max_length=1024)
88
-
89
- # Generate summary
90
- summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
91
-
92
- # Decode summary
93
- summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
94
-
95
- # Display the summary
96
- st.write("**Summary:**")
97
- st.write(summary)
98
- else:
99
- pass
100
- #st.warning("Please enter some text to summarize!")
101
-
102
-
103
- ################ STATEMENT SUMMARIZATION1 - side bar #################
104
 
105
  # Load the summarization model and tokenizer
106
  MODEL_NAME = "facebook/bart-large-cnn" # A commonly used summarization model
107
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
108
  model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
109
 
110
- st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Text Summarization - BART</h3>", unsafe_allow_html=True)
111
  DEFAULT_STATEMENT = ""
112
  # Create a text area for user input
113
  STATEMENT = st.sidebar.text_area('Enter Statement (String1)', DEFAULT_STATEMENT, height=150)
@@ -135,21 +97,13 @@ else:
135
  #st.warning('πŸ‘ˆ Please enter Statement!')
136
 
137
 
138
- ################ STATEMENT SUMMARIZATION - side bar #################
139
 
140
  # Load the summarization model
141
  #summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model
142
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
143
 
144
- # # Define the summarization function
145
- # def summarize_statement(txt):
146
- # st.write('\n\n')
147
- # #st.write(txt[:100]) # Display the first 100 characters of the article
148
- # #st.write('--------------------------------------------------------------')
149
- # summary = summarizer(txt, max_length=500, min_length=30, do_sample=False)
150
- # st.write(summary[0]['summary_text'])
151
-
152
- st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Text Summarization - BART</h3>", unsafe_allow_html=True)
153
  DEFAULT_STATEMENT = ""
154
  # Create a text area for user input
155
  STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150)
 
14
  st.markdown("<h3 style='text-align: center; font-size: 20px; color: blue;'>Orama's AI Craze</h3>", unsafe_allow_html=True)
15
 
16
 
17
+ ################ SENTIMENT ANALYSIS - side bar - pippeline #################
18
 
19
  # Initialize the sentiment analysis pipeline
20
  # No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english
 
48
  st.sidebar.write(f"Text: {txt}")
49
  st.sidebar.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n")
50
 
51
+ st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Sentiment Analysis - Pipeline</h3>", unsafe_allow_html=True)
52
  DEFAULT_SENTIMENT = ""
53
  # Create a text area for user input
54
  SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150)
 
62
  #st.warning('πŸ‘ˆ Please enter Sentiment!')
63
 
64
 
65
+ ################ STATEMENT SUMMARIZATION1 - side bar - tokenizer #################
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  # Load the summarization model and tokenizer
68
  MODEL_NAME = "facebook/bart-large-cnn" # A commonly used summarization model
69
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
70
  model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
71
 
72
+ st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Text Summarization - BART Tokenizer</h3>", unsafe_allow_html=True)
73
  DEFAULT_STATEMENT = ""
74
  # Create a text area for user input
75
  STATEMENT = st.sidebar.text_area('Enter Statement (String1)', DEFAULT_STATEMENT, height=150)
 
97
  #st.warning('πŸ‘ˆ Please enter Statement!')
98
 
99
 
100
+ ################ STATEMENT SUMMARIZATION - side bar - pipeline #################
101
 
102
  # Load the summarization model
103
  #summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model
104
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
105
 
106
+ st.sidebar.markdown("<h3 style='text-align: center; font-size: 16px; background-color: white; color: black;'>Text Summarization - BART Pipeline</h3>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
107
  DEFAULT_STATEMENT = ""
108
  # Create a text area for user input
109
  STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150)