#x = st.slider('Select a value') #st.write(x, 'squared is', x * x) import streamlit as st from transformers import pipeline import ast # Load the summarization model #summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Default article text # DEFAULT_ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. # A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband. # Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other. # In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage. # Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the # 2010 marriage license application, according to court documents. # """ DEFAULT_ARTICLE = "" # Create a text area for user input ARTICLE = st.sidebar.text_area('Enter Article (String)', DEFAULT_ARTICLE, height=150) # Define the summarization function def summarize(txt): st.write('\n\n') st.write(txt[:100]) # Display the first 100 characters of the article st.write('--------------------------------------------------------------') summary = summarizer(txt, max_length=130, min_length=30, do_sample=False) st.write(summary[0]['summary_text']) # Create a button and trigger the summarize function when clicked if st.sidebar.button('Summarize Article'): summarize(ARTICLE) else: st.warning('👈 Please enter Article!') ################################# # Initialize the sentiment analysis pipeline # No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english sentiment_pipeline = pipeline("sentiment-analysis") # Default article text # DEFAULT_SENTIMENT = """[ # "I'm so happy today!", # "This is the worst experience ever.", # "It's a decent product, nothing special." # ]""" # DEFAULT_SENTIMENT = "I'm so happy today!" def is_valid_list_string(string): try: result = ast.literal_eval(string) return isinstance(result, list) except (ValueError, SyntaxError): return False # Define the summarization function def analyze(txt): st.write('\n\n') #st.write(txt[:100]) # Display the first 100 characters of the article st.write('--------------------------------------------------------------') # Display the results #if type(txt_converted) == 'list': #if isinstance(txt_converted, list): if is_valid_list_string(txt): txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list # Perform Hugging sentiment analysis on multiple texts results = sentiment_pipeline(txt_converted) for i, text in enumerate(txt_converted): st.write(f"Text: {text}") st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n") else: # Perform Hugging sentiment analysis on multiple texts results = sentiment_pipeline(txt) st.write(f"Text: {txt}") st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n") DEFAULT_SENTIMENT = "" # Create a text area for user input SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150) # Enable the button only if there is text in the SENTIMENT variable if SENTIMENT: if st.sidebar.button('Analyze Sentiment'): # Call your Analyze function here #st.write(f"Summarizing: {SENTIMENT}") analyze(SENTIMENT) # Directly pass the SENTIMENT else: st.sidebar.button('Summarize Sentiment', disabled=True) st.warning('👈 Please enter Sentiment!') # # Create a button and trigger the summarize function when clicked # if st.sidebar.button('Summarize Sentiment'): # #ast.literal_eval() is a function in Python that safely evaluates a string containing a valid Python expression, # #such as lists, dictionaries, tuples, sets, integers, and floats. It parses the string and returns the corresponding # #Python object, without executing any arbitrary code, which makes it safer than using eval(). # #summarize(str(SENTIMENT)) #explicitly change SENTIMENT to string so that even when ypu provide unquoted string, it still works # analyze(SENTIMENT) # Directly pass the SENTIMENT # else: # st.warning('👈 Please enter Sentiment!')