# Natural Language Tools # Richard Orama - September 2024 #x = st.slider('Select a value') #st.write(x, 'squared is', x * x) import streamlit as st from transformers import pipeline import ast ################ STATEMENT SUMMARIZATION ################# # Load the summarization model #summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # smaller version of the model summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Define the summarization function def summarize_statement(txt): st.write('\n\n') #st.write(txt[:100]) # Display the first 100 characters of the article #st.write('--------------------------------------------------------------') summary = summarizer(txt, max_length=500, min_length=30, do_sample=False) st.write(summary[0]['summary_text']) DEFAULT_STATEMENT = "" # Create a text area for user input STATEMENT = st.sidebar.text_area('Enter Statement (String)', DEFAULT_STATEMENT, height=150) # Enable the button only if there is text in the SENTIMENT variable if STATEMENT: if st.sidebar.button('Summarize Statement'): # Call your Summarize function here summarize_statement(STATEMENT) # Directly pass the STATEMENT else: st.sidebar.button('Summarize Statement', disabled=True) st.warning('👈 Please enter Statement!') ################ SENTIMENT ANALYSIS ################# # Initialize the sentiment analysis pipeline # No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english sentiment_pipeline = pipeline("sentiment-analysis") def is_valid_list_string(string): try: result = ast.literal_eval(string) return isinstance(result, list) except (ValueError, SyntaxError): return False # Define the summarization function def analyze_sentiment(txt): st.write('\n\n') #st.write(txt[:100]) # Display the first 100 characters of the article #st.write('--------------------------------------------------------------') # Display the results if is_valid_list_string(txt): txt_converted = ast.literal_eval(txt) #convert string to actual content, e.g. list # Perform Hugging sentiment analysis on multiple texts results = sentiment_pipeline(txt_converted) for i, text in enumerate(txt_converted): st.write(f"Text: {text}") st.write(f"Sentiment: {results[i]['label']}, Score: {results[i]['score']:.2f}\n") else: # Perform Hugging sentiment analysis on multiple texts results = sentiment_pipeline(txt) st.write(f"Text: {txt}") st.write(f"Sentiment: {results[0]['label']}, Score: {results[0]['score']:.2f}\n") DEFAULT_SENTIMENT = "" # Create a text area for user input SENTIMENT = st.sidebar.text_area('Enter Sentiment (String or List of Strings)', DEFAULT_SENTIMENT, height=150) # Enable the button only if there is text in the SENTIMENT variable if SENTIMENT: if st.sidebar.button('Analyze Sentiment'): analyze_sentiment(SENTIMENT) # Directly pass the SENTIMENT else: st.sidebar.button('Analyze Sentiment', disabled=True) st.warning('👈 Please enter Sentiment!')