from openai import OpenAI from concurrent.futures import ThreadPoolExecutor import json import copy from tqdm import tqdm import queue import time base_id_prompt = "# Role: 问答机器人\n\n## Profile\n- author: 尖米\n- version: 1.0\n- language: 中文\n- description: 你是机智流的问答机器人,你可以对用户输入的图像、文字进行解析,并根据已有的知识库进行精确回答。\n\n## Skills\n1. 图像识别与解析:能够识别用户上传的图像,并提取其中的关键信息。\n2. 自然语言处理:能够理解并解析用户输入的文字信息,准确把握用户意图。\n3. 知识库应用:根据解析结果,查询知识库,提供准确、相关的答案。\n4. 多轮对话:支持与用户进行多轮对话,提供连续性、上下文相关的回答。\n\n## Rules\n1. 必须充分理解用户输入的图像和文字内容。\n2. 回答需要简洁明了,避免过于复杂或含糊的表述。\n3. 在回答过程中,优先查询和引用公司已有的知识库。\n4. 对于无法回答的问题,需要引导用户提供更多信息或寻求人工客服帮助。\n\n## Workflows\n1. 接收并分析用户输入的图像或文字信息。\n2. 基于图像识别或自然语言处理技术,提取关键信息。\n3. 查询知识库,匹配相关信息。\n4. 向用户提供精准、相关的回答。\n5. 如有必要,进行多轮对话,确保问题得到有效解决。\n\n## Init\n欢迎使用机智流的问答机器人,请输入您的问题,我将尽力为您提供帮助。\n", # 定义客户端 clients = { "internlm": OpenAI( api_key="your_internlm_api_key", base_url="https://internlm-chat.intern-ai.org.cn/puyu/api/v1/", ), "glm": OpenAI( api_key="your_glm_api_key", base_url="your_glm_url", ), "deepseek": OpenAI( api_key="your_deepseek_api_key", base_url="your_deepseek_url", ) } class BaseDataAPI: def __init__(self, questions_path, save_path, repeat=0, client_name="internlm"): self.client = clients[client_name] self.questions_path = questions_path self.save_path = save_path self.repeat = repeat self.data_template = { "conversation": [ { "system": base_id_prompt "input": "xxx", "output": "xxx" } ] } def get_answer(self, question): chat_rsp = self.client.chat.completions.create( model="internlm2.5-latest", # 或 "internlm2-latest" 或 "glm-4" messages=[ {"role": "system", "content": base_id_prompt}, {"role": "user", "content": question} ], stream=False, ) return self.build_data(question, chat_rsp) def build_data(self, question, chat_rsp): temp = copy.deepcopy(self.data_template) temp['conversation'][0]['input'] = question temp['conversation'][0]['output'] = chat_rsp.choices[0].message.content return temp def save(self, train_data): with open(self.save_path, 'a', encoding='utf-8') as f: for item in train_data: json.dump(item, f, ensure_ascii=False) f.write("\n") @staticmethod def load_txt(path): with open(path, 'r', encoding='utf-8') as f: return f.read() def read_questions(self): prompt = self.load_txt(self.questions_path) promptlist = prompt.split('\n') if self.repeat != 0: promptlist = promptlist * self.repeat print(f"Total questions: {len(promptlist)}") return promptlist class GetDataApi(BaseDataAPI): def run(self): answer_queue = queue.Queue() promptlist = self.read_questions() with ThreadPoolExecutor(max_workers=10) as pool: print("Asking...") futures = [pool.submit(self.get_answer, question) for question in promptlist] for future in tqdm(futures): result = future.result() answer_queue.put(result) if answer_queue.qsize() >= 10: # 每10个问题保存一次 self.save([answer_queue.get() for _ in range(10)]) # 保存剩余的回答 remaining = [] while not answer_queue.empty(): remaining.append(answer_queue.get()) if remaining: self.save(remaining) class ChatData(BaseDataAPI): def __init__(self, train_data, save_path, client_name="internlm"): super().__init__(train_data, save_path, client_name=client_name) self.train_data = train_data def load_data(self): with open(self.train_data, 'r', encoding='utf-8') as f: return f.readlines() def ask_for_tts(self, question, save_ask): chat_rsp = self.client.chat.completions.create( model="internlm2.5-latest", # 或 "glm-4" messages=[ {"role": "system", "content": base_id_prompt}, {"role": "user", "content": question} ], stream=False, ) return self.build_data(save_ask, chat_rsp) def __call__(self): train_data = self.load_data() answer_queue = queue.Queue() with ThreadPoolExecutor(max_workers=10) as pool: print("Asking...") futures = [] for item in train_data: item = json.loads(item) question = item['conversation'][0]['output'] save_ask = item['conversation'][0]['input'] futures.append(pool.submit(self.ask_for_tts, question, save_ask)) for future in tqdm(futures): result = future.result() answer_queue.put(result) if answer_queue.qsize() >= 10: # 每10个问题保存一次 self.save([answer_queue.get() for _ in range(10)]) # 保存剩余的回答 remaining = [] while not answer_queue.empty(): remaining.append(answer_queue.get()) if remaining: self.save(remaining) if __name__ == '__main__': questions_path = './tools/L1_XTuner_code/Q_list.txt' save_path = './data/train_basic.jsonl' start_time = time.time() chat_data = GetDataApi(questions_path, save_path) chat_data() end_time = time.time() print('Done') print(f'Time used: {end_time - start_time:.2f} seconds')