IrisModel / model.py
Rishabh IO
First deploy to HF Spaces
5f1f14e
raw
history blame contribute delete
698 Bytes
# app/model.py
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from joblib import dump
# Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a Random Forest classifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate the model
accuracy = model.score(X_test, y_test)
print("Model accuracy:", accuracy)
# Save the trained model as a joblib file
dump(model, "model.joblib")