# app/model.py from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from joblib import dump # Load the Iris dataset iris = load_iris() X, y = iris.data, iris.target # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a Random Forest classifier model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Evaluate the model accuracy = model.score(X_test, y_test) print("Model accuracy:", accuracy) # Save the trained model as a joblib file dump(model, "model.joblib")