Spaces:
Sleeping
Sleeping
riyadifirman
commited on
Commit
•
d75157f
1
Parent(s):
c035d29
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
4 |
-
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
5 |
from PIL import Image
|
6 |
-
import traceback
|
7 |
|
8 |
# Load model and processor
|
9 |
model_name = "riyadifirman/klasifikasiburung"
|
@@ -14,45 +13,28 @@ model = AutoModelForImageClassification.from_pretrained(model_name)
|
|
14 |
normalize = Normalize(mean=processor.image_mean, std=processor.image_std)
|
15 |
transform = Compose([
|
16 |
Resize((224, 224)),
|
|
|
|
|
17 |
ToTensor(),
|
18 |
normalize,
|
19 |
])
|
20 |
|
21 |
def predict(image):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
return processor.decode(predicted_class_idx)
|
29 |
-
except Exception as e:
|
30 |
-
print("An error occurred:", e)
|
31 |
-
print(traceback.format_exc())
|
32 |
-
return "An error occurred while processing your request."
|
33 |
-
|
34 |
-
def predict_function(input_data):
|
35 |
-
try:
|
36 |
-
# model
|
37 |
-
output = f"Processed input: {input_data}" # Gantilah dengan model
|
38 |
-
return output
|
39 |
-
except Exception as e:
|
40 |
-
# Menampilkan error
|
41 |
-
print("An error occurred:", e)
|
42 |
-
print(traceback.format_exc()) # Ini akan print error secara detail
|
43 |
-
return "An error occurred while processing your request."
|
44 |
|
45 |
# Create Gradio interface
|
46 |
interface = gr.Interface(
|
47 |
fn=predict,
|
48 |
-
inputs=gr.Image(type="numpy"),
|
49 |
outputs="text",
|
50 |
title="Bird Classification",
|
51 |
description="Upload an image of a bird to classify it."
|
52 |
)
|
53 |
|
54 |
-
iface = gr.Interface(fn=predict_function, inputs="text", outputs="text")
|
55 |
-
|
56 |
if __name__ == "__main__":
|
57 |
interface.launch()
|
58 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
4 |
+
from torchvision.transforms import Compose, Resize, ToTensor, Normalize,RandomHorizontalFlip, RandomRotation
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
# Load model and processor
|
8 |
model_name = "riyadifirman/klasifikasiburung"
|
|
|
13 |
normalize = Normalize(mean=processor.image_mean, std=processor.image_std)
|
14 |
transform = Compose([
|
15 |
Resize((224, 224)),
|
16 |
+
RandomHorizontalFlip(),
|
17 |
+
RandomRotation(10),
|
18 |
ToTensor(),
|
19 |
normalize,
|
20 |
])
|
21 |
|
22 |
def predict(image):
|
23 |
+
image = Image.fromarray(image)
|
24 |
+
inputs = transform(image).unsqueeze(0)
|
25 |
+
outputs = model(inputs)
|
26 |
+
logits = outputs.logits
|
27 |
+
predicted_class_idx = logits.argmax(-1).item()
|
28 |
+
return processor.decode(predicted_class_idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create Gradio interface
|
31 |
interface = gr.Interface(
|
32 |
fn=predict,
|
33 |
+
inputs=gr.inputs.Image(type="numpy"),
|
34 |
outputs="text",
|
35 |
title="Bird Classification",
|
36 |
description="Upload an image of a bird to classify it."
|
37 |
)
|
38 |
|
|
|
|
|
39 |
if __name__ == "__main__":
|
40 |
interface.launch()
|
|