|
import gradio as gr |
|
import os |
|
from gradio_client import Client, handle_file |
|
from huggingface_hub import login |
|
from PIL import Image |
|
import numpy as np |
|
import random |
|
from translatepy import Translator |
|
import requests |
|
import re |
|
import asyncio |
|
from gradio_imageslider import ImageSlider |
|
|
|
hf_tkn = os.environ.get("HF_TKN") |
|
login(hf_tkn) |
|
|
|
translator = Translator() |
|
basemodel = "black-forest-labs/FLUX.1-dev" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
CSS = """ |
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
JS = """function () { |
|
gradioURL = window.location.href |
|
if (!gradioURL.endsWith('?__theme=dark')) { |
|
window.location.replace(gradioURL + '?__theme=dark'); |
|
} |
|
}""" |
|
|
|
def enable_lora(lora_add): |
|
if not lora_add: |
|
return basemodel |
|
else: |
|
return lora_add |
|
|
|
def handle_file(img_path): |
|
return Image.open(img_path) |
|
|
|
def get_upscale_finegrain(prompt, img_path, upscale_factor): |
|
if upscale_factor == 0: |
|
return handle_file(img_path) |
|
client = Client("finegrain/finegrain-image-enhancer") |
|
result = client.predict( |
|
input_image=handle_file(img_path), |
|
prompt=prompt, |
|
negative_prompt="", |
|
seed=42, |
|
upscale_factor=upscale_factor, |
|
controlnet_scale=0.6, |
|
controlnet_decay=1, |
|
condition_scale=6, |
|
tile_width=112, |
|
tile_height=144, |
|
denoise_strength=0.35, |
|
num_inference_steps=18, |
|
solver="DDIM", |
|
api_name="/process" |
|
) |
|
print(result) |
|
return result[1] |
|
|
|
async def upscale_image(image, upscale_factor): |
|
try: |
|
result = get_upscale_finegrain( |
|
prompt="", |
|
img_path=image, |
|
upscale_factor=upscale_factor |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Error in {e}") |
|
|
|
return result |
|
|
|
async def generate_image( |
|
prompt:str, |
|
model:str, |
|
lora_word:str, |
|
width:int=768, |
|
height:int=1024, |
|
scales:float=3.5, |
|
steps:int=24, |
|
seed:int=-1 |
|
): |
|
if seed == -1: |
|
seed = random.randint(0, MAX_SEED) |
|
seed = int(seed) |
|
print(f'prompt:{prompt}') |
|
|
|
text = str(translator.translate(prompt, 'English')) + "," + lora_word |
|
|
|
try: |
|
image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model))) |
|
except Exception as e: |
|
raise gr.Error(f"Error in {e}") |
|
|
|
return image, seed |
|
|
|
async def gen( |
|
prompt:str, |
|
lora_add:str="XLabs-AI/flux-RealismLora", |
|
lora_word:str="", |
|
width:int=768, |
|
height:int=1024, |
|
scales:float=3.5, |
|
steps:int=24, |
|
seed:int=-1, |
|
upscale_factor:int=0 |
|
): |
|
model = enable_lora(lora_add) |
|
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed) |
|
|
|
upscaled_image = await upscale_image(image, upscale_factor) |
|
return upscaled_image, seed |
|
|
|
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo: |
|
gr.HTML("<h1><center>Flux Lab Light</center></h1>") |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Row(): |
|
img = gr.Image(type="filepath", label='Imagen generada por Flux', height=600) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label='Ingresa tu prompt (Multi-Idiomas)', placeholder="Ingresa prompt...", scale=6) |
|
sendBtn = gr.Button(scale=1, variant='primary') |
|
with gr.Accordion("Opciones avanzadas", open=True): |
|
with gr.Column(scale=1): |
|
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768) |
|
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024) |
|
scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5) |
|
steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1) |
|
upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0) |
|
seed = gr.Number(label="Semilla", value=-1) |
|
sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img]) |
|
demo.launch() |