Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ import requests
|
|
8 |
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
11 |
-
from glob import glob
|
12 |
|
13 |
translator = Translator()
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -29,7 +28,7 @@ JS = """function () {
|
|
29 |
}
|
30 |
}"""
|
31 |
|
32 |
-
|
33 |
|
34 |
def enable_lora(lora_in, lora_add):
|
35 |
if not lora_in and not lora_add:
|
@@ -39,12 +38,6 @@ def enable_lora(lora_in, lora_add):
|
|
39 |
lora_in = lora_add
|
40 |
return lora_in
|
41 |
|
42 |
-
def imagename():
|
43 |
-
os.makedirs("output", exist_ok=True)
|
44 |
-
base_count = len(glob(os.path.join("output", "*.webp")))
|
45 |
-
image_path = os.path.join("output", f"{base_count:06d}.webp")
|
46 |
-
return image_path
|
47 |
-
|
48 |
async def generate_image(
|
49 |
prompt:str,
|
50 |
model:str,
|
@@ -61,9 +54,9 @@ async def generate_image(
|
|
61 |
|
62 |
text = str(translator.translate(prompt, 'English'))
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
image1 = await
|
67 |
prompt=text,
|
68 |
height=height,
|
69 |
width=width,
|
@@ -71,10 +64,11 @@ async def generate_image(
|
|
71 |
num_inference_steps=steps,
|
72 |
model=basemodel,
|
73 |
)
|
74 |
-
image1=image1.save(imagename())
|
75 |
print(image1)
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
prompt=text,
|
79 |
height=height,
|
80 |
width=width,
|
@@ -82,8 +76,8 @@ async def generate_image(
|
|
82 |
num_inference_steps=steps,
|
83 |
model=model,
|
84 |
)
|
85 |
-
image2=image2.save(imagename())
|
86 |
print(image2)
|
|
|
87 |
return image1, image2, seed
|
88 |
|
89 |
async def gen(
|
|
|
8 |
import re
|
9 |
import asyncio
|
10 |
from PIL import Image
|
|
|
11 |
|
12 |
translator = Translator()
|
13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
28 |
}
|
29 |
}"""
|
30 |
|
31 |
+
|
32 |
|
33 |
def enable_lora(lora_in, lora_add):
|
34 |
if not lora_in and not lora_add:
|
|
|
38 |
lora_in = lora_add
|
39 |
return lora_in
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
async def generate_image(
|
42 |
prompt:str,
|
43 |
model:str,
|
|
|
54 |
|
55 |
text = str(translator.translate(prompt, 'English'))
|
56 |
|
57 |
+
client1 = AsyncInferenceClient(basemodel)
|
58 |
+
|
59 |
+
image1 = await client1.text_to_image(
|
60 |
prompt=text,
|
61 |
height=height,
|
62 |
width=width,
|
|
|
64 |
num_inference_steps=steps,
|
65 |
model=basemodel,
|
66 |
)
|
|
|
67 |
print(image1)
|
68 |
+
|
69 |
+
client2 = AsyncInferenceClient(model)
|
70 |
+
|
71 |
+
image2 = await client2.text_to_image(
|
72 |
prompt=text,
|
73 |
height=height,
|
74 |
width=width,
|
|
|
76 |
num_inference_steps=steps,
|
77 |
model=model,
|
78 |
)
|
|
|
79 |
print(image2)
|
80 |
+
|
81 |
return image1, image2, seed
|
82 |
|
83 |
async def gen(
|