Spaces:
Sleeping
Sleeping
File size: 49,584 Bytes
634707c a651226 4470f0e 634707c 4470f0e d8cce8d 68d6b53 3ffc79c b751266 87ab15e 8089056 e94d0a2 a651226 634707c 42da8d1 634707c a651226 634707c a651226 634707c 4470f0e 634707c a651226 87ab15e d8cce8d 87ab15e 634707c a651226 634707c a651226 634707c a651226 634707c a651226 634707c a651226 634707c a651226 634707c 1d8708c 634707c 3ba5f94 a651226 634707c a651226 634707c a651226 634707c a651226 634707c a651226 634707c d8cce8d 8d7cd17 d8cce8d 8d7cd17 d8cce8d 3bfaea4 8d7cd17 3bfaea4 ef9bb1b d8cce8d 8d7cd17 3bfaea4 8d7cd17 3bfaea4 ef9bb1b 3bfaea4 ef9bb1b 3bfaea4 8d7cd17 3bfaea4 8d7cd17 3bfaea4 d8cce8d 8d7cd17 d8cce8d 3bfaea4 ef9bb1b 3bfaea4 d8cce8d 3bfaea4 d8cce8d 3bfaea4 d8cce8d 87ab15e 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 43583a0 3ffc79c 5bda15d 9a265c9 35ef9cd 9a265c9 35ef9cd 9a265c9 35ef9cd 9a265c9 35ef9cd 9a265c9 09b4ed7 9a265c9 09b4ed7 9a265c9 09b4ed7 9a265c9 35ef9cd b173e2a 1e3e7b9 b173e2a a651226 b173e2a 3ffc79c 51899f1 b173e2a 35ef9cd b173e2a 35ef9cd b173e2a 796986f b173e2a 92d6900 b173e2a 92d6900 b173e2a 4470f0e 3ba5f94 634707c 3ba5f94 634707c 4470f0e 92d6900 4470f0e 92d6900 4470f0e b173e2a 92d6900 b173e2a 4470f0e b173e2a 4470f0e b173e2a 92d6900 b173e2a 4470f0e b173e2a 4470f0e d8cce8d e0ca927 185e544 d8cce8d e0ca927 d8cce8d e0ca927 d8cce8d 185e544 e0ca927 3bfaea4 e0ca927 3bfaea4 e0ca927 185e544 3bfaea4 e0ca927 8c49e1b 185e544 e0ca927 8c49e1b 185e544 8c49e1b 185e544 e0ca927 185e544 8d7cd17 e0ca927 8d7cd17 185e544 8d7cd17 185e544 8d7cd17 185e544 3bfaea4 185e544 8c49e1b 185e544 e0ca927 185e544 3bfaea4 185e544 e0ca927 185e544 e0ca927 185e544 e0ca927 185e544 e0ca927 8c49e1b 185e544 3bfaea4 185e544 a4baf5c 3ffc79c 43583a0 de4f70b 43583a0 de4f70b 3ffc79c 43583a0 87ab15e 43583a0 de4f70b 43583a0 de4f70b 43583a0 de4f70b 3ffc79c de4f70b 43583a0 4a4a03c 43583a0 de4f70b 43583a0 e94d0a2 de4f70b e94d0a2 de4f70b e94d0a2 de4f70b 690e825 4d9baf1 de4f70b 690e825 de4f70b e0ca927 de4f70b e0ca927 de4f70b 43583a0 35ef9cd b173e2a 1d8708c b173e2a d8cce8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 |
import pandas as pd
import streamlit as st
import datasets
import plotly.express as px
from transformers import AutoProcessor, AutoModel
from PIL import Image
import os
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
import subprocess
from tempfile import NamedTemporaryFile
from itertools import combinations
import networkx as nx
import plotly.graph_objects as go
import colorcet as cc
from matplotlib.colors import rgb2hex
from sklearn.cluster import KMeans, MiniBatchKMeans
from sklearn.decomposition import PCA
import hdbscan
import umap
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from datetime import datetime
import re
#st.set_page_config(layout="wide")
model_name = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
token_ = st.secrets["token"]
@st.cache_resource(show_spinner=True)
def load_model(model_name):
"""
Load the model and processor
"""
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return processor, model
@st.cache_data(show_spinner=True)
def load_dataset():
dataset = datasets.load_dataset('rjadr/ditaduranuncamais', split='train', token=token_)
dataset.add_faiss_index(column="text_embs")
dataset.add_faiss_index(column="img_embs")
dataset = dataset.remove_columns(['Post Created Date', 'Post Created Time','Like and View Counts Disabled','Link','Download URL','Views'])
return dataset
@st.cache_data(show_spinner=False)
def load_dataframe(_dataset):
dataframe = _dataset.remove_columns(['text_embs', 'img_embs']).to_pandas()
# Extract hashtags with regex and convert to set
dataframe['Hashtags'] = dataframe.apply(lambda row: f"{row['Description']} {row['Image Text']}", axis=1)
dataframe['Hashtags'] = dataframe['Hashtags'].str.lower().str.findall(r'#(\w+)').apply(set)
# Create a cleaned description column up-front
dataframe['description_clean'] = dataframe['Description'].apply(clean_and_truncate_text)
# Reorder columns to keep the new column next to the original
dataframe = dataframe[['Post Created', 'image', 'Description', 'description_clean', 'Image Text', 'Account', 'User Name'] + [col for col in dataframe.columns if col not in ['Post Created', 'image', 'Description', 'description_clean', 'Image Text', 'Account', 'User Name']]]
return dataframe
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
modify = st.checkbox("Add filters")
if not modify:
return df
df = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
for col in df.columns:
if is_object_dtype(df[col]):
try:
df[col] = pd.to_datetime(df[col])
except Exception:
pass
if is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
for column in to_filter_columns:
left, right = st.columns((1, 20))
left.write("β³")
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
_min,
_max,
(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}",
value=(
df[column].min(),
df[column].max(),
),
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df = df.loc[df[column].between(start_date, end_date)]
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].str.contains(user_text_input)]
return df
@st.cache_data
def get_image_embs(_processor, _model, uploaded_file):
"""
Get image embeddings
Parameters:
processor (transformers.AutoProcessor): Processor for the model
model (transformers.AutoModel): Model to use for embeddings
uploaded_file (PIL.Image): Uploaded image file
Returns:
img_emb (np.array): Image embeddings
"""
# Load the image from local path
image = Image.open(uploaded_file)
# Process the image
inputs = _processor(images=image, return_tensors="pt")
# Forward pass without gradient calculation
outputs = _model.get_image_features(**inputs)
# Normalize the image embeddings
img_embs = outputs / outputs.norm(dim=-1, keepdim=True)
# Convert to list and add to example
img_emb = img_embs.squeeze(0).detach().cpu().numpy()
return img_emb
@st.cache_data(show_spinner=False)
def get_text_embs(_processor, _model, text):
"""
Get text embeddings
Parameters:
processor (transformers.AutoProcessor): Processor for the model
model (transformers.AutoModel): Model to use for embeddings
text (str): Text to encode
Returns:
text_emb (np.array): Text embeddings
"""
# Process the text with truncation
inputs = _processor(
text=text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=77 # CLIP's maximum sequence length
)
# Forward pass without gradient calculation
outputs = _model.get_text_features(**inputs)
# Normalize the text embeddings
text_embs = outputs / outputs.norm(dim=-1, keepdim=True)
# Convert to list and add to example
txt_emb = text_embs.squeeze(0).detach().cpu().numpy()
return txt_emb
@st.cache_data
def postprocess_results(scores, samples):
"""
Postprocess results to tuple of labels and scores
Parameters:
scores (np.array): Scores
samples (datasets.Dataset): Samples
Returns:
labels (list): List of tuples of PIL images and labels/scores
"""
samples_df = pd.DataFrame.from_dict(samples)
samples_df["score"] = scores
samples_df["score"] = (1 - (samples_df["score"] - samples_df["score"].min()) / (
samples_df["score"].max() - samples_df["score"].min())) * 100
samples_df["score"] = samples_df["score"].astype(int)
samples_df.reset_index(inplace=True, drop=True)
samples_df = samples_df[['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in samples_df.columns if col not in ['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name']]]
return samples_df.drop(columns=['text_embs', 'img_embs'])
@st.cache_data
def text_to_text(text, k=5):
"""
Text to text
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(processor, model, text)
scores, samples = dataset.get_nearest_examples('text_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_text(image, k=5):
"""
Image to text
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(processor, model, image.name)
scores, samples = dataset.get_nearest_examples('text_embs', img_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def text_to_image(text, k=5):
"""
Text to image
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(processor, model, text)
scores, samples = dataset.get_nearest_examples('img_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_image(image, k=5):
"""
Image to image
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(processor, model, image.name)
scores, samples = dataset.get_nearest_examples('img_embs', img_emb, k=k)
return postprocess_results(scores, samples)
def disparity_filter(g: nx.Graph, weight: str = 'weight', alpha: float = 0.05) -> nx.Graph:
"""
Computes the backbone of the input graph using the disparity filter algorithm.
The algorithm is proposed in:
M. A. Serrano, M. Boguna, and A. Vespignani,
"Extracting the Multiscale Backbone of Complex Weighted Networks",
PNAS, 106(16), pp 6483--6488 (2009).
DOI: 10.1073/pnas.0808904106
Implementation taken from https://groups.google.com/g/networkx-discuss/c/bCuHZ3qQ2po/m/QvUUJqOYDbIJ
Parameters
----------
g : NetworkX graph
The input graph.
weight : str, optional (default='weight')
The name of the edge attribute to use as weight.
alpha : float, optional (default=0.05)
The statistical significance level for the disparity filter (p-value).
Returns
-------
backbone_graph : NetworkX graph
The backbone graph.
"""
# Create an empty graph for the backbone
backbone_graph = nx.Graph()
# Iterate over all nodes in the input graph
for node in g:
# Get the degree of the node (number of edges connected to the node)
k_n = len(g[node])
# Only proceed if the node has more than one connection
if k_n > 1:
# Calculate the sum of weights of edges connected to the node
sum_w = sum(g[node][neighbor][weight] for neighbor in g[node])
# Iterate over all neighbors of the node
for neighbor in g[node]:
# Get the weight of the edge between the node and its neighbor
edge_weight = g[node][neighbor][weight]
# Calculate the proportion of the total weight that this edge represents
pij = float(edge_weight) / sum_w
# Perform the disparity filter test. If it passes, the edge is considered significant and is added to the backbone
if (1 - pij) ** (k_n - 1) < alpha:
backbone_graph.add_edge(node, neighbor, weight=edge_weight)
# Return the backbone graph
return backbone_graph
st.cache_data(show_spinner=True)
def assign_community_colors(G: nx.Graph, attr: str = 'community') -> dict:
"""
Assigns a unique color to each community in the input graph.
Parameters
----------
G : nx.Graph
The input graph.
attr : str, optional
The node attribute of the community names or indexes (default is 'community').
Returns
-------
dict
A dictionary mapping each community to a unique color.
"""
glasbey_colors = cc.glasbey_hv
communities_ = set(nx.get_node_attributes(G, attr).values())
return {community: rgb2hex(glasbey_colors[i % len(glasbey_colors)]) for i, community in enumerate(communities_)}
st.cache_data(show_spinner=True)
def generate_hover_text(G: nx.Graph, attr: str = 'community') -> list:
"""
Generates hover text for each node in the input graph.
Parameters
----------
G : nx.Graph
The input graph.
attr : str, optional
The node attribute of the community names or indexes (default is 'community').
Returns
-------
list
A list of strings containing the hover text for each node.
"""
return [f"Node: {str(node)}<br>Community: {G.nodes[node][attr] + 1}<br># of connections: {len(adjacencies)}" for node, adjacencies in G.adjacency()]
st.cache_data(show_spinner=True)
def calculate_node_sizes(G: nx.Graph) -> list:
"""
Calculates the size of each node in the input graph based on its degree.
Parameters
----------
G : nx.Graph
The input graph.
Returns
-------
list
A list of node sizes.
"""
degrees = dict(G.degree())
max_degree = max(deg for node, deg in degrees.items())
return [10 + 20 * (degrees[node] / max_degree) for node in G.nodes()]
@st.cache_data(show_spinner=True)
def plot_graph(_G: nx.Graph, layout_name: str = "spring", community_names_lookup: dict = None):
"""
Plots a network graph with communities and a legend, using a choice of pure-Python layouts.
Parameters
----------
_G : nx.Graph
The input graph with a 'community' attribute on each node.
layout_name : str, optional
The name of the NetworkX layout algorithm to use.
community_names_lookup : dict, optional
A dictionary mapping community key (e.g., 'Community 1') to a display name.
"""
# --- Select the layout algorithm ---
if layout_name == "kamada_kawai":
# Aesthetically pleasing, can be slow on large graphs.
pos = nx.kamada_kawai_layout(_G, dim=3)
elif layout_name == "circular":
# Fast, simple circle. It's 2D, so we add a Z-coordinate.
pos_2d = nx.circular_layout(_G)
pos = {node: (*coords, 0) for node, coords in pos_2d.items()}
elif layout_name == "spectral":
# Good for showing clusters. Also 2D, so we add a Z-coordinate.
pos_2d = nx.spectral_layout(_G)
pos = {node: (*coords, 0) for node, coords in pos_2d.items()}
else: # Default to "spring"
# The standard physics-based layout.
pos = nx.spring_layout(_G, dim=3, k=0.15, iterations=50, seed=779)
# --- Generate colors and traces (this part remains the same) ---
communities = sorted(list(set(nx.get_node_attributes(_G, 'community').values())))
community_colors = {comm: color for comm, color in zip(communities, cc.glasbey_hv)}
edge_x, edge_y, edge_z = [], [], []
for edge in _G.edges():
x0, y0, z0 = pos[edge[0]]
x1, y1, z1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_z.extend([z0, z1, None])
edge_trace = go.Scatter3d(
x=edge_x, y=edge_y, z=edge_z,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
data = [edge_trace]
for comm_idx in communities:
comm_key = f'Community {comm_idx + 1}'
comm_name = community_names_lookup.get(comm_key, comm_key)
node_x, node_y, node_z, node_text = [], [], [], []
for node in _G.nodes():
if _G.nodes[node]['community'] == comm_idx:
x, y, z = pos[node]
node_x.append(x)
node_y.append(y)
node_z.append(z)
node_text.append(f"Hashtag: #{node}<br>Community: {comm_name}")
node_trace = go.Scatter3d(
x=node_x, y=node_y, z=node_z,
mode='markers',
name=comm_name,
marker=dict(
symbol='circle',
size=7,
color=rgb2hex(community_colors[comm_idx]),
line=dict(color='rgb(50,50,50)', width=0.5)
),
text=node_text,
hoverinfo='text'
)
data.append(node_trace)
# --- Layout (remains the same) ---
layout = go.Layout(
title="3D Hashtag Network Graph",
showlegend=True,
legend=dict(title="Communities", x=1.05, y=0.5),
width=1000,
height=800,
margin=dict(l=0, r=0, b=0, t=40),
scene=dict(
xaxis=dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title=''),
yaxis=dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title=''),
zaxis=dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='')
)
)
fig = go.Figure(data=data, layout=layout)
return fig
def clean_and_truncate_text(text, max_length=30):
"""
Removes hashtags and truncates text to a specified length.
Args:
text (str): The input string to clean.
max_length (int): The maximum length of the output string.
Returns:
str: The cleaned and truncated string.
"""
if not isinstance(text, str):
return "" # Return empty string for non-string inputs
# Use regex to remove hashtags (words starting with #)
no_hashtags = re.sub(r'#\w+\s*', '', text).strip()
# Truncate the string if it's too long
if len(no_hashtags) > max_length:
return no_hashtags[:max_length] + '...'
else:
return no_hashtags
@st.cache_data(show_spinner=True)
def cluster_embeddings(embeddings, clustering_algo='KMeans', dim_reduction='PCA',
# KMeans & MiniBatchKMeans params
n_clusters=5, batch_size=256, max_iter=100,
# HDBSCAN params
min_cluster_size=5, min_samples=5,
# Reducer params
n_components=2, n_neighbors=15, min_dist=0.0, random_state=42):
"""Performs dimensionality reduction and clustering on a set of embeddings.
This function chains two steps: first, it reduces the dimensionality of the
input embeddings using either PCA or UMAP. Second, it applies a clustering
algorithm (KMeans, MiniBatchKMeans, or HDBSCAN) to the reduced-dimensional
data to assign a cluster label to each embedding.
Args:
embeddings (list or np.ndarray): A list or array of high-dimensional
embedding vectors. Each element should be a 1D NumPy array.
clustering_algo (str, optional): The clustering algorithm to use.
Options are 'KMeans', 'MiniBatchKMeans', or 'HDBSCAN'.
Defaults to 'KMeans'.
dim_reduction (str, optional): The dimensionality reduction method to use.
Options are 'PCA' or 'UMAP'. Defaults to 'PCA'.
n_clusters (int, optional): The number of clusters to form. Used by
KMeans and MiniBatchKMeans. Defaults to 5.
batch_size (int, optional): The size of mini-batches for MiniBatchKMeans.
Defaults to 256.
max_iter (int, optional): The maximum number of iterations for
MiniBatchKMeans. Defaults to 100.
min_cluster_size (int, optional): The minimum number of samples in a
group for it to be considered a cluster. Used by HDBSCAN.
Defaults to 5.
min_samples (int, optional): The number of samples in a neighborhood for
a point to be considered a core point. Used by HDBSCAN.
Defaults to 5.
n_components (int, optional): The number of dimensions to reduce to.
Used by PCA and UMAP. Defaults to 2.
n_neighbors (int, optional): The number of neighbors to consider for
manifold approximation. Used by UMAP. Defaults to 15.
min_dist (float, optional): The effective minimum distance between
embedded points. Used by UMAP. Defaults to 0.0.
random_state (int, optional): The seed used by the random number
generator for reproducibility. Defaults to 42.
Returns:
tuple: A tuple containing:
- np.ndarray: An array of cluster labels assigned to each embedding.
- np.ndarray: The reduced-dimensional representation of the embeddings.
Raises:
ValueError: If an invalid `clustering_algo` or `dim_reduction` method
is specified.
"""
# Stack embeddings into a single NumPy array
data_array = np.stack(embeddings)
# --- 1. Dimensionality Reduction ---
if dim_reduction == 'PCA':
reducer = PCA(n_components=n_components, random_state=random_state)
elif dim_reduction == 'UMAP':
reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, n_components=n_components, random_state=random_state)
else:
raise ValueError('Invalid dimensionality reduction method')
reduced_embeddings = reducer.fit_transform(data_array)
# --- 2. Clustering ---
if clustering_algo == 'MiniBatchKMeans':
# Use the specific parameters for MiniBatchKMeans
clusterer = MiniBatchKMeans(
n_clusters=n_clusters,
random_state=random_state,
batch_size=batch_size,
max_iter=max_iter,
n_init='auto' # Recommended setting
)
elif clustering_algo == 'KMeans':
clusterer = KMeans(n_clusters=n_clusters, random_state=random_state, n_init='auto')
elif clustering_algo == 'HDBSCAN':
clusterer = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, min_samples=min_samples)
else:
raise ValueError('Invalid clustering algorithm')
labels = clusterer.fit_predict(reduced_embeddings)
return labels, reduced_embeddings
st.title("#ditaduranuncamais Data Explorer")
def check_password():
"""Returns `True` if user is authenticated, `False` otherwise."""
# If the user is already authenticated, just return True.
# This is the most important part: we don't render the password form again.
if st.session_state.get("password_correct", False):
return True
# This part of the code will only run if the user is not yet authenticated.
def password_entered():
"""Checks whether the password entered is correct."""
if st.session_state.get("password") == st.secrets.get("password"):
st.session_state["password_correct"] = True
# Don't store the password in session state.
del st.session_state["password"]
else:
st.session_state["password_correct"] = False
# Show the password input form.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
# Show an error message if the last attempt was incorrect.
# The 'in' check prevents the error from showing on the first load.
if "password_correct" in st.session_state and not st.session_state.password_correct:
st.error("π Password incorrect")
# Return False to stop the main app from running.
return False
if not check_password():
st.stop()
# Check if the directory exists
dataset = load_dataset()
df = load_dataframe(dataset)
processor, model = load_model(model_name)
#image_model = load_img_model()
#text_model = load_txt_model()
menu_options = ["Data exploration", "Semantic search", "Hashtags", "Clustering", "Stats"]
st.sidebar.markdown('# Menu')
selected_menu_option = st.sidebar.radio("Select a page", menu_options)
if selected_menu_option == "Data exploration":
st.dataframe(
data=filter_dataframe(df),
# use_container_width=True,
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_menu_option == "Semantic search":
tabs = ["Text to Text", "Text to Image", "Image to Image", "Image to Text"]
selected_tab = st.sidebar.radio("Select a search type", tabs)
if selected_tab == "Text to Text":
st.markdown('## Text to text search')
text_to_text_input = st.text_input("Enter text")
text_to_text_k_top = st.slider("Number of results", 1, 500, 20)
if st.button("Search"):
if not text_to_text_input:
st.warning("Please enter text")
else:
st.dataframe(
data=text_to_text(text_to_text_input, text_to_text_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Text to Image":
st.markdown('## Text to image search')
text_to_image_input = st.text_input("Enter text")
text_to_image_k_top = st.slider("Number of results", 1, 500, 20)
if st.button("Search"):
if not text_to_image_input:
st.warning("Please enter some text")
else:
st.dataframe(
data=text_to_image(text_to_image_input, text_to_image_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Image":
st.markdown('## Image to image search')
image_to_image_k_top = st.slider("Number of results", 1, 500, 20)
image_to_image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
temp_file = NamedTemporaryFile(delete=False)
if st.button("Search"):
if not image_to_image_input:
st.warning("Please upload an image")
else:
temp_file.write(image_to_image_input.getvalue())
st.dataframe(
data=image_to_image(temp_file, image_to_image_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Text":
st.markdown('## Image to text search')
image_to_text_k_top = st.slider("Number of results", 1, 500, 20)
image_to_text_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
temp_file = NamedTemporaryFile(delete=False)
if st.button("Search"):
if not image_to_text_input:
st.warning("Please upload an image")
else:
temp_file.write(image_to_text_input.getvalue())
st.dataframe(
data=image_to_text(temp_file, image_to_text_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_menu_option == "Hashtags":
st.markdown("### Hashtag Co-occurrence Analysis")
st.markdown("This section creates a network of hashtags based on how often they are used together. Use the sidebar to configure the analysis, then click the button to generate the network and identify communities.")
# --- Sidebar Configuration (no changes) ---
if 'dfx' not in st.session_state:
st.session_state.dfx = df.copy()
all_hashtags = sorted(list(set(item for sublist in st.session_state.dfx['Hashtags'] for item in sublist)))
st.sidebar.markdown('## Hashtag Network Options')
hashtags_to_remove = st.sidebar.multiselect("Hashtags to remove", all_hashtags)
col1, col2 = st.sidebar.columns(2)
if col1.button("Remove hashtags"):
st.session_state.dfx['Hashtags'] = st.session_state.dfx['Hashtags'].apply(lambda x: [item for item in x if item not in hashtags_to_remove])
if 'hashtag_results' in st.session_state:
del st.session_state.hashtag_results
st.rerun()
if col2.button("Reset Hashtags"):
st.session_state.dfx = df.copy()
if 'hashtag_results' in st.session_state:
del st.session_state.hashtag_results
st.rerun()
weight_option = st.sidebar.radio(
'Select weight definition',
('Number of users that use the hashtag pairs', 'Total number of occurrences')
)
# --- Main Page Content ---
if st.button("Generate Hashtag Network", type="primary"):
with st.spinner("Building graph, filtering edges, and detecting communities..."):
# (Calculation code remains the same as before...)
hashtag_user_pairs = [(tuple(sorted(combination)), userid) for hashtags, userid in zip(st.session_state.dfx['Hashtags'], st.session_state.dfx['User Name']) for combination in combinations(hashtags, r=2)]
hashtag_user_df = pd.DataFrame(hashtag_user_pairs, columns=['hashtag_pair', 'User Name'])
if weight_option == 'Number of users that use the hashtag pairs':
edge_df = hashtag_user_df.groupby('hashtag_pair').agg({'User Name': 'nunique'}).reset_index()
else:
edge_df = hashtag_user_df.groupby('hashtag_pair').size().reset_index(name='User Name')
edge_df = edge_df.rename(columns={'User Name': 'weight'})
edge_df[['hashtag1', 'hashtag2']] = pd.DataFrame(edge_df['hashtag_pair'].tolist(), index=edge_df.index)
edge_list = edge_df[['hashtag1', 'hashtag2', 'weight']]
G = nx.from_pandas_edgelist(edge_list, 'hashtag1', 'hashtag2', 'weight')
G_backbone = disparity_filter(G, weight='weight', alpha=0.05)
communities = list(nx.community.louvain_communities(G_backbone, weight='weight', seed=1234))
communities.sort(key=len, reverse=True)
for i, community in enumerate(communities):
for node in community:
G_backbone.nodes[node]['community'] = i
sorted_community_hashtags = pd.DataFrame([
[h for h, _ in sorted(((h, G.degree(h, weight='weight')) for h in com), key=lambda x: x[1], reverse=True)]
for com in communities
]).T
sorted_community_hashtags.columns = [f'Community {i+1}' for i in range(len(sorted_community_hashtags.columns))]
# Initialize the community names dataframe and store it in session state
df_community_names = pd.DataFrame(
sorted_community_hashtags.columns,
columns=['community_names'],
index=sorted_community_hashtags.columns
)
st.session_state.community_names_df = df_community_names
st.session_state.hashtag_results = {
"G_backbone": G_backbone,
"communities": communities,
"sorted_community_hashtags": sorted_community_hashtags,
"edge_list": edge_list
}
st.rerun()
# --- Display Results Section ---
if 'hashtag_results' in st.session_state:
results = st.session_state.hashtag_results
G_backbone = results['G_backbone']
communities = results['communities']
sorted_community_hashtags = results['sorted_community_hashtags']
edge_list = results['edge_list']
st.success(f"Network generated! Found **{len(communities)}** communities from **{len(G_backbone.nodes)}** hashtags and **{len(G_backbone.edges)}** connections.")
# Define the tabs with the editor in its own tab
tab_graph, tab_editor, tab_timeline, tab_lists = st.tabs([
"π Network Graph",
"π Edit Community Names",
"π Community Timelines",
"π Community & Edge Lists"
])
with tab_graph:
st.markdown("### Hashtag Network Graph")
st.markdown("Nodes represent hashtags, colored by community. The legend uses the names from the 'Edit Community Names' tab.")
# Re-introduce the layout selector with safe, pure-Python options
layout_options = {
"Spring": "spring",
"Kamada-Kawai": "kamada_kawai",
"Circular": "circular",
"Spectral": "spectral"
}
selected_layout_name = st.selectbox(
"Graph Layout Algorithm",
options=layout_options.keys()
)
# Get the actual function name string
layout_alg_str = layout_options[selected_layout_name]
# Retrieve edited names from session state
community_names_lookup = st.session_state.community_names_df['community_names'].to_dict()
# Call the plot function with the chosen layout
fig = plot_graph(
_G=G_backbone,
layout_name=layout_alg_str,
community_names_lookup=community_names_lookup
)
st.plotly_chart(fig, use_container_width=True)
with tab_editor:
st.markdown("### Edit Community Names")
st.markdown("Change the default community names in the table below. The new names will automatically update the graph legend and the timeline chart.")
# The data editor modifies the dataframe in session_state
edited_df = st.data_editor(
st.session_state.community_names_df,
use_container_width=True,
num_rows="dynamic" # Allows for adding/removing if needed, though less likely here
)
# Persist any changes back to session state
st.session_state.community_names_df = edited_df
st.download_button(
label="Download Community Names as CSV",
data=edited_df.to_csv().encode("utf-8"),
file_name="community_names.csv",
mime="text/csv",
)
with tab_timeline:
st.markdown("### Community Size Over Time")
# Retrieve the latest names from session state for the multiselect options
community_names_lookup = st.session_state.community_names_df['community_names'].to_dict()
selected_communities = st.multiselect('Select Communities', community_names_lookup.values(), default=list(community_names_lookup.values()))
resample_dict = {'Day': 'D', 'Week': 'W', 'Month': 'M', 'Quarter': 'Q', 'Year': 'Y'}
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()), index=4)
community_dict = {node: community_names_lookup.get(f'Community {i+1}') for i, comm_set in enumerate(communities) for node in comm_set}
df_communities = st.session_state.dfx.copy()
df_communities['Communities'] = df_communities['Hashtags'].apply(lambda tags: list(set(community_dict.get(tag) for tag in tags if tag in community_dict)))
df_communities = df_communities.explode('Communities').dropna(subset=['Communities'])
df_ts = df_communities.set_index('Post Created')
df_community_sizes = df_ts.groupby([pd.Grouper(freq=resample_dict[resample_time]), 'Communities']).size().unstack(fill_value=0)
existing_selected_cols = [col for col in selected_communities if col in df_community_sizes.columns]
if existing_selected_cols:
st.area_chart(df_community_sizes[existing_selected_cols])
else:
st.warning("No data available for the selected communities.")
with tab_lists:
st.markdown("### Hashtag Communities (by importance)")
st.dataframe(sorted_community_hashtags)
st.markdown("### Top Edge Pairs (by weight)")
st.dataframe(edge_list.sort_values(by='weight', ascending=False).head(100))
elif selected_menu_option == "Clustering":
st.markdown("## Clustering of Posts")
st.markdown("This section allows you to group posts based on the similarity of their text or image content. Use the sidebar to configure the clustering process, then click 'Run Clustering' to see the results.")
# --- Sidebar Configuration (no changes here) ---
st.sidebar.markdown("# Clustering Options")
st.sidebar.markdown("### Data & Algorithm")
type_embeddings = st.sidebar.selectbox("Cluster based on:", ["Image", "Text"])
clustering_algo = st.sidebar.selectbox("Clustering Algorithm:", ["MiniBatchKMeans", "HDBSCAN", "KMeans"])
st.sidebar.info(f"**Tip:** `MiniBatchKMeans` is the fastest for a quick overview.")
st.sidebar.markdown("### Algorithm Settings")
if clustering_algo in ["KMeans", "MiniBatchKMeans"]:
n_clusters = st.sidebar.slider("Number of Clusters (k)", 2, 50, 5, key="n_clusters_slider")
if clustering_algo == "MiniBatchKMeans":
batch_size = st.sidebar.slider("Batch Size", 32, 1024, 256, 32, help="Number of samples to use in each mini-batch.")
max_iter = st.sidebar.slider("Max Iterations", 50, 500, 100, 50, help="Maximum number of iterations.")
else:
batch_size, max_iter = None, None
min_cluster_size, min_samples = None, None
elif clustering_algo == "HDBSCAN":
min_cluster_size = st.sidebar.slider("Minimum Cluster Size", 2, 200, 15, help="Smallest size for a group to be a cluster.")
min_samples = st.sidebar.slider("Minimum Samples", 1, 50, 5, help="Larger values lead to more points being declared as noise.")
n_clusters, batch_size, max_iter = None, None, None
st.sidebar.markdown("### Dimensionality Reduction")
dim_reduction = st.sidebar.selectbox("Reduction Method:", ["PCA", "UMAP"])
st.sidebar.info(f"**Tip:** `PCA` is much faster than `UMAP`.")
if dim_reduction == "UMAP":
n_components = st.sidebar.slider("Number of Components", 2, 80, 50, help="Dimensions to reduce to before clustering.")
n_neighbors = st.sidebar.slider("Number of Neighbors", 2, 50, 15, help="Controls UMAP's balance of local/global structure.")
min_dist = st.sidebar.slider("Minimum Distance", 0.0, 1.0, 0.0, help="Controls how tightly UMAP packs points.")
else:
n_components = st.sidebar.slider("Number of Components", 2, 80, 2)
n_neighbors, min_dist = None, None
# --- Main Page Content ---
# 1. Add a button to trigger the expensive computation
if st.button("Run Clustering", type="primary"):
with st.spinner("Clustering embeddings... This may take a moment."):
if type_embeddings == "Text":
embeddings = dataset['text_embs']
else: # Image
embeddings = dataset['img_embs']
# Call the expensive function here
labels, reduced_embeddings = cluster_embeddings(
embeddings,
clustering_algo=clustering_algo,
dim_reduction=dim_reduction,
n_clusters=n_clusters,
min_cluster_size=min_cluster_size,
n_components=n_components,
n_neighbors=n_neighbors,
min_dist=min_dist,
min_samples=min_samples,
batch_size=batch_size,
max_iter=max_iter
)
# 2. Store the results in session state
st.session_state['cluster_results'] = {
"labels": labels,
"reduced_embeddings": reduced_embeddings,
"type_embeddings": type_embeddings,
"clustering_algo": clustering_algo,
"dim_reduction": dim_reduction
}
st.rerun() # Rerun to display results immediately after calculation
# 3. Only show results if they exist in session state
if 'cluster_results' in st.session_state:
# Unpack results from session state
results = st.session_state['cluster_results']
labels = results['labels']
reduced_embeddings = results['reduced_embeddings']
num_found_clusters = len(set(labels) - {-1})
st.success(f"Clustering complete! Found **{num_found_clusters}** clusters using **{results['clustering_algo']}** on **{results['type_embeddings']}** embeddings with **{results['dim_reduction']}** reduction.")
df_clustered = df.copy()
df_clustered['cluster'] = labels
# 4. Use tabs to organize the output
tab1, tab2, tab3 = st.tabs(["π Results Table", "π 2D Visualization", "π Time Series Analysis"])
with tab1:
st.markdown("### Clustered Data")
st.dataframe(
data=filter_dataframe(df_clustered),
column_config={
"image": st.column_config.ImageColumn("Image", help="Instagram image"),
"URL": st.column_config.LinkColumn("Link", help="Instagram link", width="small")
},
hide_index=True,
use_container_width=True
)
st.download_button(
"Download Clustered Data as CSV",
df_clustered.to_csv(index=False).encode('utf-8'),
f'clustered_data_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv',
"text/csv",
key='download-cluster-csv'
)
with tab2:
st.markdown("### Cluster Visualization")
if reduced_embeddings.shape[1] > 2:
with st.spinner("Reducing dimensions for 2D visualization..."):
vis_reducer = umap.UMAP(n_components=2, random_state=42)
vis_embeddings = vis_reducer.fit_transform(reduced_embeddings)
else:
vis_embeddings = reduced_embeddings
df_plot_bokeh = pd.DataFrame(vis_embeddings, columns=('x', 'y'))
df_plot_bokeh['description_clean'] = df_clustered['description_clean']
df_plot_bokeh['image_url'] = df_clustered['image']
df_plot_bokeh['cluster'] = labels
unique_labels = sorted(list(set(labels)))
color_dict = {label: rgb2hex(cc.glasbey_hv[i % len(cc.glasbey_hv)]) for i, label in enumerate(unique_labels)}
df_plot_bokeh['color'] = df_plot_bokeh['cluster'].map(color_dict)
source = ColumnDataSource(data=df_plot_bokeh)
TOOLTIPS = """
<div style="width: 200px; padding: 5px; background-color: #f0f0f0; border-radius: 5px; font-family: sans-serif; border: 1px solid #cccccc;">
<div>
<img src="@image_url"
height="150"
width="150"
style="display: block; margin: auto;"
border="0">
</img>
</div>
<hr style="border: 1px solid #aaaaaa; margin: 8px 0;">
<div style="text-align: left; padding: 0 5px;">
<span style="font-size: 12px; font-weight: bold;">Cluster: @cluster</span><br>
<span style="font-size: 11px; word-wrap: break-word;">@description_clean</span>
</div>
</div>
"""
p = figure(width=800, height=800, tooltips=TOOLTIPS, title="2D Visualization of Post Clusters")
p.circle('x', 'y', size=10, source=source, color='color', legend_field='cluster', line_color=None, alpha=0.8)
p.legend.title = 'Cluster'
p.legend.location = "top_left"
st.bokeh_chart(p, use_container_width=True)
with tab3:
st.markdown("### Cluster Analysis Over Time")
# Define the dictionary before using it.
resample_dict = {
'Day': 'D',
'Week': 'W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
variable = st.selectbox('Select Variable for Time Series:', ['Likes', 'Comments', 'Followers at Posting', 'Total Interactions'], key="cluster_ts_var")
resample_time = st.selectbox('Resample Time By:', list(resample_dict.keys()), index=2, key="cluster_ts_resample")
df_ts = df_clustered.copy()
df_ts['Post Created'] = pd.to_datetime(df_ts['Post Created'])
df_ts = df_ts.set_index('Post Created')
df_ts = df_ts[df_ts['cluster'] != -1] # Exclude noise points
if not df_ts.empty:
# Use the dictionary to get the correct frequency string ('D', 'W', 'M', etc.)
df_plot = df_ts.groupby([pd.Grouper(freq=resample_dict[resample_time]), 'cluster'])[variable].sum().unstack(fill_value=0)
st.line_chart(df_plot)
else:
st.warning("No data available for plotting (all points may have been classified as noise).")
elif selected_menu_option == "Stats":
st.markdown("### Time Series Analysis")
# Dropdown to select variables
variable = st.selectbox('Select Variable', ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments'])
# Dropdown to select time resampling
resample_dict = {
'Day': 'D',
'Three Days': '3D',
'Week': 'W',
'Two Weeks': '2W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
# Dropdown to select time resampling
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()))
df_filtered = df.set_index('Post Created')
# Slider for date range selection
min_date = df_filtered.index.min().date()
max_date = df_filtered.index.max().date()
date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
# Filter dataframe based on selected date range
df_filtered = df_filtered[(df_filtered.index.date >= date_range[0]) & (df_filtered.index.date <= date_range[1])]
# Create a separate DataFrame for resampling and plotting
df_resampled = df_filtered[variable].resample(resample_dict[resample_time]).sum()
st.line_chart(df_resampled)
st.markdown("### Correlation Analysis")
# Dropdown to select variables for scatter plot
options = ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments']
scatter_variable_1 = st.selectbox('Select Variable 1 for Scatter Plot', options)
# options.remove(scatter_variable_1) # remove the chosen option from the list
scatter_variable_2 = st.selectbox('Select Variable 2 for Scatter Plot', options)
# Plot scatter chart
st.write(f"Scatter Plot of {scatter_variable_1} vs {scatter_variable_2}")
# Plot scatter chart
scatter_fig = px.scatter(df_filtered, x=scatter_variable_1, y=scatter_variable_2) #, trendline='ols', trendline_color_override='red')
st.plotly_chart(scatter_fig)
# calculate correlation for scatter_variable_1 with scatter_variable_2
corr = df_filtered[scatter_variable_1].corr(df_filtered[scatter_variable_2])
if corr > 0.7:
st.write(f"The correlation coefficient is {corr}, indicating a strong positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > 0.3:
st.write(f"The correlation coefficient is {corr}, indicating a moderate positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.3:
st.write(f"The correlation coefficient is {corr}, indicating a weak or no relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.7:
st.write(f"The correlation coefficient is {corr}, indicating a moderate negative relationship between {scatter_variable_1} and {scatter_variable_2}.")
else:
st.write(f"The correlation coefficient is {corr}, indicating a strong negative relationship between {scatter_variable_1} and {scatter_variable_2}.") |