HyPA-RAG / app.py
rk68's picture
Upload 3 files
d0d09f7 verified
raw
history blame
14.6 kB
import streamlit as st
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer
from retrievers import PARetriever
from utils_code import create_chat_engine
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
from llama_index.llms.azure_openai import AzureOpenAI
from dotenv import load_dotenv, find_dotenv
from retrievers import HyPARetriever, PARetriever
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.graph_stores.neo4j import Neo4jPropertyGraphStore
from llama_index.core import PropertyGraphIndex
from llama_index.core.vector_stores import MetadataFilter, MetadataFilters, FilterOperator
from llama_index.retrievers.bm25 import BM25Retriever
# Load environment variables from the .env file
dotenv_path = find_dotenv()
#print(f"Dotenv Path: {dotenv_path}")
load_dotenv(dotenv_path)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
Settings.embed_model = embed_model
# Set Azure OpenAI keys for Giskard if needed
#os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("GSK_AZURE_OPENAI_API_KEY")
#os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("GSK_AZURE_OPENAI_ENDPOINT")
os.environ["GSK_LLM_MODEL"] = "gpt-4o-mini"
# Pinecone and Neo4j credentials
pinecone_api_key = os.getenv("PINECONE_API_KEY")
ll144_index_name = 'll144'
euaiact_index_name = 'euaiact'
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=pinecone_api_key)
def metadata_filter(corpus_name):
if corpus_name == "EUAIACT":
# Filter for 'EUAIACT.pdf'
filter = MetadataFilters(filters=[MetadataFilter(key="filepath", value="'EUAIACT.pdf'", operator=FilterOperator.CONTAINS)])
elif corpus_name == "LL144":
# Filter for 'LLL144.pdf' or 'LL144_Definitions.pdf'
filter = MetadataFilters(filters=[
MetadataFilter(key="filepath", value="'LL144.pdf'", operator=FilterOperator.CONTAINS),
MetadataFilter(key="filepath", value="'LL144_Definitions.pdf'", operator=FilterOperator.CONTAINS)
])
return filter
# Load vector index
#@st.cache_data(ttl=None, persist=None)
def load_vector_index(corpus_name):
if corpus_name == "LL144":
pinecone_index = pc.Index(ll144_index_name)
elif corpus_name == "EUAIACT":
pinecone_index = pc.Index(euaiact_index_name)
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
vector_index = VectorStoreIndex.from_vector_store(vector_store)
return vector_index
# Load property graph index
#@st.cache_data(ttl=None, persist=None)
def load_pg_index():
neo4j_username = os.getenv("NEO4J_USERNAME")
neo4j_password = os.getenv("NEO4J_PASSWORD")
neo4j_url = os.getenv("NEO4J_URI")
graph_store = Neo4jPropertyGraphStore(username=neo4j_username, password=neo4j_password, url=neo4j_url)
pg_index = PropertyGraphIndex.from_existing(property_graph_store=graph_store)
return pg_index
# Initialize the retriever (HyPA or PA)
def init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model):
# Check if vector index is cached, if not, load it
if "vector_index" not in st.session_state:
st.session_state.vector_index = load_vector_index(corpus_name)
# Check if property graph index is cached, if not, load it
if "pg_index" not in st.session_state:
st.session_state.pg_index = load_pg_index()
vector_index = st.session_state.vector_index
graph_index = st.session_state.pg_index
llm = st.session_state.llm
filter = metadata_filter(corpus_name=corpus_name)
# Set the reranker model if selected
reranker_model_name = "BAAI/bge-reranker-large" if use_reranker else None
# Choose the appropriate retriever based on user selection
if retriever_type == "HyPA":
retriever = HyPARetriever(
llm=llm,
vector_retriever=vector_index.as_retriever(similarity_top_k=10),
bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10),
kg_index=graph_index, # Include KG for HyPA
rewriter=use_rewriter, # Set rewriter option
classifier_model=classifier_model, # Use the selected classifier model
verbose=False,
property_index=True, # Use property graph index
reranker_model_name=reranker_model_name, # Use reranker if selected
pg_filters=filter
)
else:
retriever = PARetriever(
llm=llm,
vector_retriever=vector_index.as_retriever(similarity_top_k=10),
bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10),
rewriter=use_rewriter, # Set rewriter option
classifier_model=classifier_model, # Use the selected classifier model
verbose=False,
reranker_model_name=reranker_model_name # Use reranker if selected
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
chat_engine = create_chat_engine(retriever=retriever, memory=memory, llm=llm)
st.session_state.chat_engine = chat_engine
#return chat_engine
def process_query(query):
"""Processes the input query and displays it along with the response in the main chat area."""
# Append the user query to the message history and display it
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.write(query)
# Ensure the chat engine is initialized
chat_engine = st.session_state.get('chat_engine', None)
if chat_engine:
# Process the query through the chat engine
with st.chat_message("assistant"):
with st.spinner("Retrieving Knowledge..."):
response = chat_engine.stream_chat(query)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
# Append the assistant's response to the message history
st.session_state.messages.append({"role": "assistant", "content": response_str})
# Expander for additional info
with st.expander("Source Nodes"):
# Display source nodes
if hasattr(response, 'source_nodes') and response.source_nodes:
for idx, node in enumerate(response.source_nodes):
st.markdown(f"#### Source Node {idx + 1}")
st.write(f"**Node ID:** {node.node_id}")
st.write(f"**Node Score:** {node.score}")
st.write("**Metadata:**")
for key, value in node.metadata.items():
st.write(f"- **{key}:** {value}")
st.write("**Content:**")
st.write(node.node.get_content())
# Add a horizontal line to separate nodes
st.markdown("---")
else:
st.write("No additional source nodes available.")
st.session_state.messages.append({"role": "assistant", "content": str(response)})
# Streamlit App
def main():
# Sidebar for retriever options
with st.sidebar:
st.image('holisticai.svg', use_column_width=True)
st.title("Retriever Settings")
# Azure OpenAI credentials input fields (start with blank fields)
azure_api_key = st.text_input("Azure OpenAI API Key", value="", type="password")
azure_endpoint = st.text_input("Azure OpenAI Endpoint", value="", type="password")
llm_model_choice = st.selectbox("Select LLM Model", ["gpt-4o-mini", "gpt35"])
# Let the user make selections without updating session state yet
retriever_type = st.selectbox("Select Retriever Method", ["PA", "HyPA"])
corpus_name = st.selectbox("Select Corpus", ["LL144", "EUAIACT"])
temperature = st.slider("Set LLM Temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
# Display a red warning about non-zero temperature
if temperature > 0:
st.markdown(
"<p style='color:red;'>Warning: A non-zero temperature may lead to hallucinations in the generated responses.</p>",
unsafe_allow_html=True
)
# Checkboxes for reranker and rewriter options
use_reranker = st.checkbox("Use Reranker")
use_rewriter = st.checkbox("Use Rewriter")
# Radio buttons for classifier model
classifier_type = st.radio("Select Classifier Type", ["2-Class", "3-Class"])
classifier_model = "rk68/distilbert-q-classifier-2" if classifier_type == "2-Class" else "rk68/distilbert-q-classifier-3"
# When the user clicks "Initialize", store everything in session state
if st.button("Initialize"):
st.session_state.retriever_type = retriever_type
st.session_state.corpus_name = corpus_name
st.session_state.temperature = temperature
st.session_state.use_reranker = use_reranker
st.session_state.use_rewriter = use_rewriter
st.session_state.classifier_type = classifier_type
st.session_state.classifier_model = classifier_model
# Store the user inputs in session state
st.session_state.azure_api_key = azure_api_key
st.session_state.azure_endpoint = azure_endpoint
# Set the environment variables from user inputs
os.environ["AZURE_OPENAI_API_KEY"] = azure_api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = azure_endpoint
llm = AzureOpenAI(
deployment_name=llm_model_choice, temperature=temperature,
api_key=azure_api_key, azure_endpoint=azure_endpoint,
api_version=os.getenv("AZURE_API_VERSION")
)
Settings.llm = llm
st.session_state.llm = llm
# Initialize retriever after storing the settings
init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model)
st.success("Retriever Initialized")
# Example questions based on selected corpus
st.markdown("### Example Queries")
# Example questions with unique button handling
example_questions = {
"LL144": [
"What is a bias audit?",
"When does it come into effect?",
"Summarise Local Law 144"
],
"EUAIACT": [
"What is an AI system?",
"What are the key takeaways?",
"Explain the key provisions of EUAIACT."
]
}
# Display buttons for the example queries
for idx, question in enumerate(example_questions.get(corpus_name, [])):
if st.button(f"{question} [{idx}]"):
process_query(question)
# Add a disclaimer at the bottom
st.markdown("---") # Horizontal line for separation
st.markdown(
"""
<p style="color:grey; font-size:12px;">
<strong>Disclaimer:</strong> This system is an academic prototype demonstration of our hybrid parameter-adaptive retrieval-augmented generation system. It is <strong>NOT</strong> a production-ready application. All outputs should be considered experimental and may not be fully accurate. This system should not be used for making important legal decisions. For complete, specific, and tailored legal advice, please consult a licensed legal professional.<br><br>
</p>
""",
unsafe_allow_html=True
)
# Check if the retriever is initialized
if "chat_engine" in st.session_state:
chat_engine = st.session_state.chat_engine
else:
st.warning("Please initialize the retriever from the sidebar.")
# Initialize session state for chat messages
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a response if the last message is from the user
if st.session_state.messages[-1]["role"] == "user":
with st.chat_message("assistant"):
with st.spinner("Retrieving Knowledge..."):
response = chat_engine.stream_chat(prompt)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
# Expander for additional info
with st.expander("Source Nodes"):
# Display source nodes
if hasattr(response, 'source_nodes') and response.source_nodes:
for idx, node in enumerate(response.source_nodes):
st.markdown(f"#### Source Node {idx + 1}")
st.write(f"**Node ID:** {node.node_id}")
st.write(f"**Node Score:** {node.score}")
st.write("**Metadata:**")
for key, value in node.metadata.items():
st.write(f"- **{key}:** {value}")
st.write("**Content:**")
st.write(node.node.get_content())
# Add a horizontal line to separate nodes
st.markdown("---")
else:
st.write("No additional source nodes available.")
st.session_state.messages.append({"role": "assistant", "content": str(response)})
if __name__ == "__main__":
main()