HyPA-RAG / retrievers.py
rk68's picture
Update retrievers.py
eedb8bc verified
raw
history blame
18.8 kB
from prompts import get_classification_prompt, get_query_generation_prompt
from utils_code import initialize_openai_creds, create_llm
from llama_index.core.schema import QueryBundle, NodeWithScore
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from transformers import pipeline
from typing import List, Optional
import asyncio
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.indices.property_graph import LLMSynonymRetriever
from llama_index.core.indices.property_graph import VectorContextRetriever, PGRetriever
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever, KGTableRetriever
import os
class PARetriever(BaseRetriever):
"""Custom retriever that performs query rewriting, Vector search, and BM25 search without Knowledge Graph search."""
def __init__(
self,
llm, # LLM for query generation
vector_retriever: Optional[VectorIndexRetriever] = None,
bm25_retriever: Optional[BaseRetriever] = None,
mode: str = "OR",
rewriter: bool = True,
classifier_model: Optional[str] = None, # Optional classifier model
device: str = 'cpu', # Device to CPU for huggingface demo
reranker_model_name: Optional[str] = None, # Model name for SentenceTransformerRerank
verbose: bool = False, # Verbose flag
fixed_params: Optional[dict] = None, # New parameter to pass in fixed parameters
categories_list: Optional[List[str]] = None, # List of categories for query classification
param_mappings: Optional[dict] = None # Custom parameter mappings based on classifier labels
) -> None:
"""Initialize PARetriever parameters."""
self._vector_retriever = vector_retriever
self._bm25_retriever = bm25_retriever
self._llm = llm
self._rewriter = rewriter
self._mode = mode
self._reranker_model_name = reranker_model_name
self._reranker = None # Initialize reranker as None
self.verbose = verbose
self.fixed_params = fixed_params
self.categories_list = categories_list
self.param_mappings = param_mappings or {
"label_0": {"top_k": 5, "max_keywords_per_query": 3, "max_knowledge_sequence": 1},
"label_1": {"top_k": 7, "max_keywords_per_query": 4, "max_knowledge_sequence": 2},
"label_2": {"top_k": 10, "max_keywords_per_query": 5, "max_knowledge_sequence": 3}
}
# Initialize the classifier if provided
self.classifier = None
if classifier_model:
self.classifier = pipeline("text-classification", model=classifier_model, device=device)
if mode not in ("AND", "OR"):
raise ValueError("Invalid mode.")
def classify_query_and_get_params(self, query: str) -> (str, dict):
"""Classify the query and determine adaptive parameters or use fixed parameters."""
if self.fixed_params:
# Use fixed parameters from the dictionary if provided
params = self.fixed_params
classification_result = "Fixed"
if self.verbose:
print(f"Using fixed parameters: {params}")
else:
params = {
"top_k": 5, # Default top-k
"max_keywords_per_query": 4, # Default max keywords
"max_knowledge_sequence": 2 # Default max knowledge sequence
}
classification_result = None
if self.classifier:
classification = self.classifier(query)[0]
label = classification['label'] # Get the classification label directly
classification_result = label # Store the classification result
if self.verbose:
print(f"Query Classification: {classification['label']} with score {classification['score']}")
# Use custom mappings or default mappings
if label in self.param_mappings:
params = self.param_mappings[label]
else:
if self.verbose:
print(f"Warning: No mapping found for label {label}, using default parameters.")
self._classification_result = classification_result
return classification_result, params
def classify_query(self, query_str: str) -> Optional[str]:
"""Classify the query into one of the predefined categories using LLM, or skip if no categories are provided."""
if not self.categories_list:
if self.verbose:
print("No categories provided, skipping query classification.")
return None
# Generate the classification prompt using external function
classification_prompt = get_classification_prompt(self.categories_list) + f" Query: '{query_str}'"
response = self._llm.complete(classification_prompt)
category = response.text.strip()
# Return the category only if it's in the categories list
return category if category in self.categories_list else None
def generate_queries(self, query_str: str, category: Optional[str], num_queries: int = 3) -> List[str]:
"""Generate query variations using the LLM, taking into account the category if applicable."""
# Generate query generation prompt using external function
query_gen_prompt = get_query_generation_prompt(query_str, num_queries)
response = self._llm.complete(query_gen_prompt)
queries = response.text.split("\n")
queries = [query.strip() for query in queries if query.strip()]
if category:
category_query = f"{category}"
queries.append(category_query)
return queries
async def run_queries(self, queries: List[str], retrievers: List[BaseRetriever]) -> dict:
"""Run queries against retrievers."""
tasks = []
for query in queries:
for retriever in retrievers:
tasks.append(retriever.aretrieve(query))
task_results = await asyncio.gather(*tasks)
results_dict = {}
for i, (query, query_result) in enumerate(zip(queries, task_results)):
results_dict[(query, i)] = query_result
return results_dict
def fuse_vector_and_bm25_results(self, results_dict, similarity_top_k: int) -> List[NodeWithScore]:
"""Fuse results from Vector and BM25 retrievers."""
k = 60.0 # `k` is a parameter used to control the impact of outlier rankings.
fused_scores = {}
text_to_node = {}
for nodes_with_scores in results_dict.values():
for rank, node_with_score in enumerate(
sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
):
text = node_with_score.node.get_content()
text_to_node[text] = node_with_score
if text not in fused_scores:
fused_scores[text] = 0.0
fused_scores[text] += 1.0 / (rank + k)
reranked_results = dict(sorted(fused_scores.items(), key=lambda x: x[1], reverse=True))
reranked_nodes: List[NodeWithScore] = []
for text, score in reranked_results.items():
if text in text_to_node:
node = text_to_node[text]
node.score = score
reranked_nodes.append(node)
else:
if self.verbose:
print(f"Warning: Text not found in `text_to_node`: {text}")
return reranked_nodes[:similarity_top_k]
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes given query."""
if self._rewriter:
category = self.classify_query(query_bundle.query_str)
if self.verbose and category:
print(f"Classified Category: {category}")
classification_result, params = self.classify_query_and_get_params(query_bundle.query_str)
self._classification_result = classification_result
top_k = params["top_k"]
if self._reranker_model_name:
self._reranker = SentenceTransformerRerank(model=self._reranker_model_name, top_n=top_k)
if self.verbose:
print(f"Initialized reranker with top_n: {top_k}")
num_queries = 3 if top_k == 5 else 5 if top_k == 7 else 7
if self.verbose:
print(f"Number of Query Rewrites: {num_queries}")
if self._rewriter:
queries = self.generate_queries(query_bundle.query_str, category, num_queries=num_queries)
if self.verbose:
print(f"Generated Queries: {queries}")
else:
queries = [query_bundle.query_str]
active_retrievers = []
if self._vector_retriever:
active_retrievers.append(self._vector_retriever)
if self._bm25_retriever:
active_retrievers.append(self._bm25_retriever)
if not active_retrievers:
raise ValueError("No active retriever provided!")
results = {}
if active_retrievers:
results = asyncio.run(self.run_queries(queries, active_retrievers))
if self.verbose:
print(f"Fusion Results: {results}")
final_results = self.fuse_vector_and_bm25_results(results, similarity_top_k=top_k)
if self._reranker:
final_results = self._reranker.postprocess_nodes(final_results, query_bundle)
if self.verbose:
print(f"Reranked Results: {final_results}")
else:
final_results = final_results[:top_k]
if self._rewriter:
unique_nodes = {}
for node in final_results:
content = node.node.get_content()
if content not in unique_nodes:
unique_nodes[content] = node
final_results = list(unique_nodes.values())
if self.verbose:
print(f"Final Results: {final_results}")
return final_results
def get_classification_result(self) -> str:
return getattr(self, "_classification_result", None)
class HyPARetriever(PARetriever):
"""Custom retriever that extends PARetriever with knowledge graph (KG) search."""
def __init__(
self,
llm, # LLM for query generation
vector_retriever: Optional[VectorIndexRetriever] = None,
bm25_retriever: Optional[BaseRetriever] = None,
kg_index=None, # Pass the knowledge graph index
property_index: bool = True, # Whether to use the property graph for retrieval
pg_filters=None,
**kwargs, # Pass any additional arguments to PARetriever
):
# Initialize PARetriever to reuse all its functionality
super().__init__(
llm=llm,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
**kwargs
)
# Initialize knowledge graph (KG) specific components
self._pg_filters = pg_filters
self._kg_index = kg_index
self.property_index = property_index
def _initialize_kg_retriever(self, params):
"""Initialize the KG retriever based on retrieval mode."""
graph_index = self._kg_index
filters = self._pg_filters
if self._kg_index and not self.property_index:
# If not using property index, use KGTableRetriever
return KGTableRetriever(
index=self._kg_index,
retriever_mode='hybrid',
max_keywords_per_query=params["max_keywords_per_query"],
max_knowledge_sequence=params["max_knowledge_sequence"]
)
elif self._kg_index and self.property_index:
# If using property index, use the simpler graph index retriever
# Use this for the DEMO
vector_retriever = VectorContextRetriever(
graph_store=graph_index.property_graph_store,
similarity_top_k=params["max_keywords_per_query"],
path_depth=params["max_knowledge_sequence"],
include_text=True,
filters=filters
)
synonym_retriever = LLMSynonymRetriever(
graph_store=graph_index.property_graph_store,
llm=self._llm,
include_text=True,
filters=filters
)
return graph_index.as_retriever(sub_retrievers=[vector_retriever, synonym_retriever])
#return graph_index.as_retriever(similarity_top_k=params["top_k"])
return None
def _combine_with_kg_results(self, vector_bm25_results, kg_results):
"""Combine KG results with vector and BM25 results."""
vector_ids = {n.node.id_ for n in vector_bm25_results}
kg_ids = {n.node.id_ for n in kg_results}
combined_results = {n.node.id_: n for n in vector_bm25_results}
combined_results.update({n.node.id_: n for n in kg_results})
if self._mode == "AND":
result_ids = vector_ids.intersection(kg_ids)
else:
result_ids = vector_ids.union(kg_ids)
return [combined_results[rid] for rid in result_ids]
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes with KG integration."""
# Call PARetriever's _retrieve to get the vector and BM25 results
final_results = super()._retrieve(query_bundle)
# If we have a KG index, initialize the retriever
if self._kg_index:
kg_retriever = self._initialize_kg_retriever(self.classify_query_and_get_params(query_bundle.query_str)[1])
if kg_retriever:
kg_nodes = kg_retriever.retrieve(query_bundle)
# Only combine KG and vector/BM25 results if property_index is True
if self.property_index:
final_results = self._combine_with_kg_results(final_results, kg_nodes)
return final_results
import os
from dotenv import load_dotenv
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.core import VectorStoreIndex, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import KGTableRetriever, VectorIndexRetriever
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.chat_engine import ContextChatEngine
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer
from llama_index.core import KnowledgeGraphIndex
from retrievers import PARetriever, HyPARetriever
def load_documents():
"""Load and return documents from specified file paths."""
loader = PyMuPDFReader()
documents1 = loader.load(file_path="../../legal_data/LL144/LL144.pdf")
documents2 = loader.load(file_path="../../legal_data/LL144/LL144_Definitions.pdf")
return documents1 + documents2
def create_indices(documents, llm, embed_model):
"""Create and return VectorStoreIndex and KnowledgeGraphIndex from documents."""
splitter = SentenceSplitter(chunk_size=512)
vector_index = VectorStoreIndex.from_documents(
documents,
embed_model=embed_model,
transformations=[splitter]
)
"""graph_index = KnowledgeGraphIndex.from_documents(
documents,
max_triplets_per_chunk=5,
llm=llm,
embed_model=embed_model,
include_embeddings=True,
transformations=[splitter]
)"""
return vector_index#, graph_index
def create_retrievers(vector_index, graph_index, llm, category_list):
"""Create and return the PA and HyPA retrievers."""
vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=10)
bm25_retriever = BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10)
PA_retriever = PARetriever(
llm=llm,
categories_list=category_list,
rewriter=True,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
classifier_model="rk68/distilbert-q-classifier-3",
verbose=False
)
HyPA_retriever = HyPARetriever(
llm=llm,
categories_list=category_list,
rewriter=True,
kg_index=graph_index,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
classifier_model="rk68/distilbert-q-classifier-3",
verbose=False,
property_index=False
)
return PA_retriever, HyPA_retriever
def create_chat_engine(retriever, memory):
"""Create and return the ContextChatEngine using the provided retriever and memory."""
return ContextChatEngine.from_defaults(
retriever=retriever,
verbose=False,
chat_mode="context",
memory_cls=memory,
memory=memory
)
def main():
# Initialize environment and LLM
gpt35_creds, gpt4o_mini_creds, gpt4o_creds = initialize_openai_creds()
llm_gpt35 = create_llm(gpt35_creds=gpt35_creds, gpt4o_mini_creds=gpt4o_mini_creds, gpt4o_creds=gpt4o_creds)
# Set global settings for embedding model and LLM
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
Settings.embed_model = embed_model
Settings.llm = llm_gpt35
category_list = [
'5-301 Bias Audit',
'5-302 Data Requirements',
'§ 5-303 Published Results',
'§ 5-304 Notice to Candidates and Employees'
]
# Load documents and create indices
documents = load_documents()
vector_index, graph_index = create_indices(documents, llm_gpt35, embed_model)
# Create retrievers
PA_retriever, HyPA_retriever = create_retrievers(vector_index, graph_index, llm_gpt35, category_list)
# Initialize chat memory
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
# Create chat engines
PA_chat_engine = create_chat_engine(PA_retriever, memory)
HyPA_chat_engine = create_chat_engine(HyPA_retriever, memory)
# Sample question and response
question = "What is a bias audit?"
PA_response = PA_chat_engine.chat(question)
HyPA_response = HyPA_chat_engine.chat(question)
# Output responses in a nicely formatted manner
print("\n" + "="*50)
print(f"Question: {question}")
print("="*50)
print("\n------- PA Retriever Response -------")
print(PA_response)
print("\n------- HyPA Retriever Response -------")
print(HyPA_response)
print("="*50 + "\n")
if __name__ == '__main__':
main()