mlara commited on
Commit
6fd5283
·
1 Parent(s): 78fb5d7

second commit

Browse files
Files changed (4) hide show
  1. Dockerfile +1 -1
  2. app.py +9 -3
  3. roaringkitty.py +31 -0
  4. talking_app.py +9 -29
Dockerfile CHANGED
@@ -8,4 +8,4 @@ COPY --chown=user . $HOME/app
8
  COPY ./requirements.txt ~/app/requirements.txt
9
  RUN pip install -r requirements.txt
10
  COPY . .
11
- CMD ["chainlit", "run", "app.py", "--port", "7860"]
 
8
  COPY ./requirements.txt ~/app/requirements.txt
9
  RUN pip install -r requirements.txt
10
  COPY . .
11
+ CMD ["chainlit", "run", "talking_app.py", "--port", "7860"]
app.py CHANGED
@@ -1,13 +1,19 @@
1
-
2
- import chainlet as cl
3
  import sys
4
 
5
  sys.path.append(".")
6
 
7
  from earnings_app import extract_information
8
 
 
 
 
 
 
 
 
9
  @cl.on_chat_start
10
- async def start():
11
  cl.user_session.set("chain", extract_information())
12
  await cl.Message(content="Welcome to Earnings chat!").send()
13
 
 
1
+ import chainlit as cl
 
2
  import sys
3
 
4
  sys.path.append(".")
5
 
6
  from earnings_app import extract_information
7
 
8
+ @cl.author_rename
9
+ def rename(orig_author: str):
10
+ diamond_char = u'\U0001F537'
11
+ phrase = diamond_char + " Diamond Hands " + diamond_char
12
+ rename_dict = {"RetrievalQA": phrase}
13
+ return rename_dict.get(orig_author, orig_author)
14
+
15
  @cl.on_chat_start
16
+ async def init():
17
  cl.user_session.set("chain", extract_information())
18
  await cl.Message(content="Welcome to Earnings chat!").send()
19
 
roaringkitty.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.embeddings.openai import OpenAIEmbeddings
2
+ from langchain.document_loaders.csv_loader import CSVLoader
3
+ from langchain.embeddings import CacheBackedEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.chains import RetrievalQA
6
+ from langchain.chat_models import ChatOpenAI
7
+ from langchain.storage import LocalFileStore
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+
10
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
11
+
12
+ def roaringkiity_chain():
13
+ # build FAISS index from csv
14
+ loader = CSVLoader(file_path="./data/roaringkitty.csv", source_column="Link")
15
+ data = loader.load()
16
+ documents = text_splitter.transform_documents(data)
17
+ store = LocalFileStore("./cache/")
18
+ core_embeddings_model = OpenAIEmbeddings()
19
+ embedder = CacheBackedEmbeddings.from_bytes_store(
20
+ core_embeddings_model, store, namespace=core_embeddings_model.model
21
+ )
22
+ # make async docsearch
23
+ docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
24
+
25
+ chain = RetrievalQA.from_chain_type(
26
+ ChatOpenAI(model="gpt-4", temperature=0, streaming=True),
27
+ chain_type="stuff",
28
+ return_source_documents=True,
29
+ retriever=docsearch.as_retriever(),
30
+ chain_type_kwargs = {"prompt": prompt}
31
+ )
talking_app.py CHANGED
@@ -1,20 +1,18 @@
 
 
 
 
1
  import chainlit as cl
2
- from langchain.embeddings.openai import OpenAIEmbeddings
3
- from langchain.document_loaders.csv_loader import CSVLoader
4
- from langchain.embeddings import CacheBackedEmbeddings
5
- from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain.vectorstores import FAISS
7
- from langchain.chains import RetrievalQA
8
- from langchain.chat_models import ChatOpenAI
9
- from langchain.storage import LocalFileStore
10
  from langchain.prompts.chat import (
11
  ChatPromptTemplate,
12
  SystemMessagePromptTemplate,
13
  HumanMessagePromptTemplate,
14
  )
15
- import chainlit as cl
 
16
 
17
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
18
 
19
  # Please respond as if you were Ken from the movie Barbie. Ken is a well-meaning but naive character who loves to Beach. He talks like a typical Californian Beach Bro, but he doesn't use the word "Dude" so much.
20
  # If you don't know the answer, just say that you don't know, don't try to make up an answer.
@@ -54,25 +52,7 @@ async def init():
54
  msg = cl.Message(content=f"Building Index...")
55
  await msg.send()
56
 
57
- # build FAISS index from csv
58
- loader = CSVLoader(file_path="./data/roaringkitty.csv", source_column="Link")
59
- data = loader.load()
60
- documents = text_splitter.transform_documents(data)
61
- store = LocalFileStore("./cache/")
62
- core_embeddings_model = OpenAIEmbeddings()
63
- embedder = CacheBackedEmbeddings.from_bytes_store(
64
- core_embeddings_model, store, namespace=core_embeddings_model.model
65
- )
66
- # make async docsearch
67
- docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
68
-
69
- chain = RetrievalQA.from_chain_type(
70
- ChatOpenAI(model="gpt-4", temperature=0, streaming=True),
71
- chain_type="stuff",
72
- return_source_documents=True,
73
- retriever=docsearch.as_retriever(),
74
- chain_type_kwargs = {"prompt": prompt}
75
- )
76
 
77
  msg.content = f"Index built!"
78
  await msg.send()
 
1
+ import sys
2
+
3
+ sys.path.append(".")
4
+
5
  import chainlit as cl
6
+
7
+
 
 
 
 
 
 
8
  from langchain.prompts.chat import (
9
  ChatPromptTemplate,
10
  SystemMessagePromptTemplate,
11
  HumanMessagePromptTemplate,
12
  )
13
+ from roaringkitty import roaringkiity_chain
14
+
15
 
 
16
 
17
  # Please respond as if you were Ken from the movie Barbie. Ken is a well-meaning but naive character who loves to Beach. He talks like a typical Californian Beach Bro, but he doesn't use the word "Dude" so much.
18
  # If you don't know the answer, just say that you don't know, don't try to make up an answer.
 
52
  msg = cl.Message(content=f"Building Index...")
53
  await msg.send()
54
 
55
+ chain = roaringkiity_chain()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  msg.content = f"Index built!"
58
  await msg.send()