Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
model = tf.keras.models.load_model('meu_modelo.h5') | |
def predict_image(img): | |
img = np.array(img) | |
img = tf.image.resize(img, (224, 224)) | |
# MobileNetV2: | |
img = img / 127.5 - 1 | |
img = np.expand_dims(img, axis=0) | |
prediction = model.predict(img) | |
if prediction < 0.5: | |
result = {"ai": float(1 - prediction[0][0]), "human": float(prediction[0][0])} | |
else: | |
result = {"human": float(prediction[0][0]), "ai": float(1 - prediction[0][0])} | |
return result | |
exemplos = [ | |
'vangoghai.jpg', | |
'vangoghhuman.jpg' | |
] | |
#gradio | |
image_input = gr.Image() | |
label_output = gr.Label() | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=image_input, | |
outputs=label_output, | |
examples=exemplos, | |
title="Image-Classifier-AIvsHuman", | |
description="Upload an image and the output will tell you whether it's potentially AI-generated or human-generated." | |
) | |
interface.launch(debug=True) | |