import torch from PIL import Image from RealESRGAN import RealESRGAN import gradio as gr import numpy as np import tempfile import time device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def load_model(scale): model = RealESRGAN(device, scale=scale) weights_path = f'weights/RealESRGAN_x{scale}.pth' try: model.load_weights(weights_path, download=True) print(f"Weights for scale {scale} loaded successfully.") except Exception as e: print(f"Error loading weights for scale {scale}: {e}") model.load_weights(weights_path, download=False) return model model2 = load_model(2) model4 = load_model(4) model8 = load_model(8) def enhance_image(image, scale): try: print(f"Enhancing image with scale {scale}...") start_time = time.time() image_np = np.array(image.convert('RGB')) print(f"Image converted to numpy array: shape {image_np.shape}, dtype {image_np.dtype}") if scale == '2x': result = model2.predict(image_np) elif scale == '4x': result = model4.predict(image_np) else: result = model8.predict(image_np) enhanced_image = Image.fromarray(np.uint8(result)) print(f"Image enhanced in {time.time() - start_time:.2f} seconds") return enhanced_image except Exception as e: print(f"Error enhancing image: {e}") return image def muda_dpi(input_image, dpi): dpi_tuple = (dpi, dpi) image = Image.fromarray(input_image.astype('uint8'), 'RGB') temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') image.save(temp_file, format='PNG', dpi=dpi_tuple) temp_file.close() return Image.open(temp_file.name) def resize_image(input_image, width, height): image = Image.fromarray(input_image.astype('uint8'), 'RGB') resized_image = image.resize((width, height)) temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') resized_image.save(temp_file, format='PNG') temp_file.close() return Image.open(temp_file.name) def process_image(input_image, enhance, scale, adjust_dpi, dpi, resize, width, height): original_image = Image.fromarray(input_image.astype('uint8'), 'RGB') if enhance: original_image = enhance_image(original_image, scale) if adjust_dpi: original_image = muda_dpi(np.array(original_image), dpi) if resize: original_image = resize_image(np.array(original_image), width, height) temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') original_image.save(temp_file.name) return original_image, temp_file.name iface = gr.Interface( fn=process_image, inputs=[ gr.Image(label="Upload"), gr.Checkbox(label="Enhance Image (ESRGAN)"), gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model'), gr.Checkbox(label="Adjust DPI"), gr.Number(label="DPI", value=300), gr.Checkbox(label="Resize"), gr.Number(label="Width", value=512), gr.Number(label="Height", value=512) ], outputs=[ gr.Image(label="Final Image"), gr.File(label="Download Final Image") ], title="Image Enhancer", description="Upload an image (.jpg, .png), enhance using AI, adjust DPI, resize and download the final result.", examples=[ ["gatuno.JPG"] ] ) # .... iface.launch(debug=True)