import tensorflow as tf import tensorflow_hub as hub import numpy as np import gradio as gr # Carrega o modelo de transferência de estilo pré-treinado style_transfer_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') def load_image(image): # Função para processar a imagem para o modelo image = image.astype(np.float32)[np.newaxis, ...] / 255. if image.shape[-1] == 4: image = image[..., :3] return image def style_transfer(content_image, style_image): # Processa as imagens content_image = load_image(content_image) style_image = load_image(style_image) # Executa a transferência de estilo stylized_image = style_transfer_model(tf.constant(content_image), tf.constant(style_image))[0] # Converte a imagem resultante para o formato correto stylized_image = np.array(stylized_image * 255, np.uint8) # Remove a dimensão do batch stylized_image = np.squeeze(stylized_image) return stylized_image iface = gr.Interface( fn=style_transfer, inputs=["image", "image"], outputs="image" ) iface.launch()