rmayormartins
commited on
Commit
·
77c34b5
1
Parent(s):
a3414e2
Subindo arquivos7
Browse files- app.py +15 -12
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
from transformers import Wav2Vec2Processor
|
|
|
5 |
|
6 |
-
#
|
7 |
model_name = "results"
|
8 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
9 |
-
|
|
|
|
|
10 |
|
11 |
def classify_accent(audio):
|
12 |
if audio is None:
|
@@ -19,40 +22,40 @@ def classify_accent(audio):
|
|
19 |
print(f"Entrada de audio recibida: {audio}")
|
20 |
|
21 |
try:
|
22 |
-
audio_array = audio[1] #
|
23 |
-
sample_rate = audio[0] #
|
24 |
|
25 |
print(f"Forma del audio: {audio_array.shape}, Frecuencia de muestreo: {sample_rate}")
|
26 |
|
27 |
-
#
|
28 |
audio_array = audio_array.astype(np.float32)
|
29 |
|
30 |
-
#
|
31 |
if sample_rate != 16000:
|
32 |
import librosa
|
33 |
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=16000)
|
34 |
|
35 |
input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values
|
36 |
|
37 |
-
#
|
38 |
with torch.no_grad():
|
39 |
logits = model(input_values).logits
|
40 |
predicted_ids = torch.argmax(logits, dim=-1).item()
|
41 |
|
42 |
-
#
|
43 |
labels = ["Español", "Otro"]
|
44 |
return labels[predicted_ids]
|
45 |
|
46 |
except Exception as e:
|
47 |
return f"Error al procesar el audio: {str(e)}"
|
48 |
|
49 |
-
#
|
50 |
description_html = """
|
51 |
<p>Prueba con grabación o cargando un archivo de audio. Para probar, recomiendo una palabra.</p>
|
52 |
-
<p>Ramon Mayor Martins
|
53 |
"""
|
54 |
|
55 |
-
#
|
56 |
interface = gr.Interface(
|
57 |
fn=classify_accent,
|
58 |
inputs=gr.Audio(type="numpy"),
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
from transformers import Wav2Vec2Processor
|
5 |
+
from safetensors.torch import load_file
|
6 |
|
7 |
+
# Carregar o modelo e o processador salvos
|
8 |
model_name = "results"
|
9 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Carregar o modelo do arquivo safetensors
|
12 |
+
model = load_file("results/model.safetensors")
|
13 |
|
14 |
def classify_accent(audio):
|
15 |
if audio is None:
|
|
|
22 |
print(f"Entrada de audio recibida: {audio}")
|
23 |
|
24 |
try:
|
25 |
+
audio_array = audio[1] # O áudio da tupla
|
26 |
+
sample_rate = audio[0] # A taxa de amostragem da tupla
|
27 |
|
28 |
print(f"Forma del audio: {audio_array.shape}, Frecuencia de muestreo: {sample_rate}")
|
29 |
|
30 |
+
# Converter o áudio para float32
|
31 |
audio_array = audio_array.astype(np.float32)
|
32 |
|
33 |
+
# Resample para 16kHz, se necessário
|
34 |
if sample_rate != 16000:
|
35 |
import librosa
|
36 |
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=16000)
|
37 |
|
38 |
input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values
|
39 |
|
40 |
+
# Inferência
|
41 |
with torch.no_grad():
|
42 |
logits = model(input_values).logits
|
43 |
predicted_ids = torch.argmax(logits, dim=-1).item()
|
44 |
|
45 |
+
# IDs de sotaque
|
46 |
labels = ["Español", "Otro"]
|
47 |
return labels[predicted_ids]
|
48 |
|
49 |
except Exception as e:
|
50 |
return f"Error al procesar el audio: {str(e)}"
|
51 |
|
52 |
+
# Interface do Gradio
|
53 |
description_html = """
|
54 |
<p>Prueba con grabación o cargando un archivo de audio. Para probar, recomiendo una palabra.</p>
|
55 |
+
<p>Ramon Mayor Martins: <a href="https://rmayormartins.github.io/" target="_blank">Website</a> | <a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a></p>
|
56 |
"""
|
57 |
|
58 |
+
# Interface do Gradio
|
59 |
interface = gr.Interface(
|
60 |
fn=classify_accent,
|
61 |
inputs=gr.Audio(type="numpy"),
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
gradio==4.
|
2 |
torch==2.0.1
|
3 |
numpy==1.23.5
|
4 |
transformers==4.24.0
|
5 |
librosa==0.9.2
|
|
|
|
1 |
+
gradio==4.12.0
|
2 |
torch==2.0.1
|
3 |
numpy==1.23.5
|
4 |
transformers==4.24.0
|
5 |
librosa==0.9.2
|
6 |
+
safetensors==0.2.9
|