import gradio as gr import torch import numpy as np from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification from safetensors.torch import load_file # Carregar o modelo e o processador salvos model_name = "results" processor = Wav2Vec2Processor.from_pretrained(model_name) # Carregar o modelo do arquivo safetensors state_dict = load_file("results/model.safetensors") model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name, state_dict=state_dict) def classify_accent(audio): if audio is None: return "Error: No se recibió audio" # Entrada print(f"Tipo de entrada de audio: {type(audio)}") # O áudio formato print(f"Entrada de audio recibida: {audio}") try: audio_array = audio["array"] # O áudio da tupla sample_rate = audio["sampling_rate"] # A taxa de amostragem da tupla print(f"Forma del audio: {audio_array.shape}, Frecuencia de muestreo: {sample_rate}") # Converter o áudio para float32 audio_array = audio_array.astype(np.float32) # Resample para 16kHz, se necessário if sample_rate != 16000: import librosa audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=16000) input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values # Inferência with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1).item() # IDs de sotaque labels = ["Español", "Otro"] return labels[predicted_ids] except Exception as e: return f"Error al procesar el audio: {str(e)}" # Interface do Gradio description_html = """

Prueba con grabación o cargando un archivo de audio. Para probar, recomiendo una palabra.

Ramon Mayor Martins: Website | Spaces

""" # Interface do Gradio interface = gr.Interface( fn=classify_accent, inputs=gr.Audio(type="numpy", source="microphone"), outputs="label", title="Clasificador de Sotaques (Español vs Otro)", description=description_html ) interface.launch()