rmayormartins commited on
Commit
0f1a690
1 Parent(s): 82203f6

Subindo arquivos33

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -3,7 +3,7 @@ import torch
3
  import numpy as np
4
  from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
5
 
6
- # modelo e o processador salvos
7
  model_name = "results"
8
  processor = Wav2Vec2Processor.from_pretrained(model_name)
9
  model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
@@ -15,12 +15,12 @@ def classify_accent(audio):
15
  # entrada
16
  print(f"Tipo de entrada de áudio: {type(audio)}")
17
 
18
- # O áudio formato
19
  print(f"Received audio input: {audio}")
20
 
21
  try:
22
- audio_array = audio[1] # O áudio da tupla
23
- sample_rate = audio[0] # A taxa de amostragem da tupla
24
 
25
  print(f"Shape do áudio: {audio_array.shape}, Taxa de amostragem: {sample_rate}")
26
 
@@ -38,20 +38,20 @@ def classify_accent(audio):
38
  logits = model(input_values).logits
39
  predicted_ids = torch.argmax(logits, dim=-1).item()
40
 
41
- # ids accent
42
- labels = ["Brazilian", "Outro"]
43
  return labels[predicted_ids]
44
 
45
  except Exception as e:
46
  return f"Erro ao processar o áudio: {str(e)}"
47
 
48
- # Interface do Gradio
49
  description_html = """
50
  <p>Test with recording or uploading an audio file. To test, I recommend short sentences.</p>
51
  <p>Ramon Mayor Martins: <a href="https://rmayormartins.github.io/" target="_blank">Website</a> | <a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a></p>
52
  """
53
 
54
- # Interface do Gradio
55
  interface = gr.Interface(
56
  fn=classify_accent,
57
  inputs=gr.Audio(type="numpy"),
 
3
  import numpy as np
4
  from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
5
 
6
+ # modelo e o processador
7
  model_name = "results"
8
  processor = Wav2Vec2Processor.from_pretrained(model_name)
9
  model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
 
15
  # entrada
16
  print(f"Tipo de entrada de áudio: {type(audio)}")
17
 
18
+ # áudio
19
  print(f"Received audio input: {audio}")
20
 
21
  try:
22
+ audio_array = audio[1] # O áudio no segundo da tupla
23
+ sample_rate = audio[0] # A taxa de amostragem no primeiro da tupla
24
 
25
  print(f"Shape do áudio: {audio_array.shape}, Taxa de amostragem: {sample_rate}")
26
 
 
38
  logits = model(input_values).logits
39
  predicted_ids = torch.argmax(logits, dim=-1).item()
40
 
41
+ # Mapeamento
42
+ labels = ["Brazilian", "Other"]
43
  return labels[predicted_ids]
44
 
45
  except Exception as e:
46
  return f"Erro ao processar o áudio: {str(e)}"
47
 
48
+ #
49
  description_html = """
50
  <p>Test with recording or uploading an audio file. To test, I recommend short sentences.</p>
51
  <p>Ramon Mayor Martins: <a href="https://rmayormartins.github.io/" target="_blank">Website</a> | <a href="https://huggingface.co/rmayormartins" target="_blank">Spaces</a></p>
52
  """
53
 
54
+ #
55
  interface = gr.Interface(
56
  fn=classify_accent,
57
  inputs=gr.Audio(type="numpy"),