Spaces:
Sleeping
Sleeping
File size: 4,480 Bytes
eb30cad b1ddb38 43010a1 8cd35aa b1ddb38 43010a1 b1ddb38 43010a1 cd663f1 eb30cad 43010a1 b1ddb38 43010a1 b1ddb38 43010a1 8af0aaf 43010a1 0d284b2 43010a1 e2e2b90 43010a1 8af0aaf 43010a1 b1ddb38 43010a1 10614c0 43010a1 b1ddb38 43010a1 eb30cad 43010a1 eb30cad cd663f1 43010a1 e5bfa3c 43010a1 e5bfa3c 43010a1 e5bfa3c 43010a1 10614c0 e5bfa3c cd663f1 43010a1 e5bfa3c cd663f1 8b45928 43010a1 37db18f aa2c611 43010a1 aa2c611 37db18f 2e2cbdb 0d284b2 2ea44e1 eb30cad 2e2cbdb 2ea44e1 2e2cbdb 43010a1 2e2cbdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import nltk
import re
import pickle
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow import keras
from sklearn.preprocessing import LabelEncoder
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
# Load Stopwords and Initialize Lemmatizer
STOPWORDS = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
# Function to clean and preprocess URL data
def preprocess_url(url):
url = url.lower() # Convert to lowercase
url = re.sub(r'https?://', '', url) # Remove http or https
url = re.sub(r'www\.', '', url) # Remove www
url = re.sub(r'[^a-zA-Z0-9]', ' ', url) # Remove special characters
url = re.sub(r'\s+', ' ', url).strip() # Remove extra spaces
tokens = word_tokenize(url) # Tokenize
tokens = [word for word in tokens if word not in STOPWORDS] # Remove stopwords
tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization
return ' '.join(tokens)
# Function to clean and preprocess HTML data
def preprocess_html(html):
html = re.sub(r'<[^>]+>', ' ', html) # Remove HTML tags
html = html.lower() # Convert to lowercase
html = re.sub(r'https?://', '', html) # Remove http or https
html = re.sub(r'[^a-zA-Z0-9]', ' ', html) # Remove special characters
html = re.sub(r'\s+', ' ', html).strip() # Remove extra spaces
tokens = word_tokenize(html) # Tokenize
tokens = [word for word in tokens if word not in STOPWORDS] # Remove stopwords
tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization
return ' '.join(tokens)
# Load trained model
model = keras.models.load_model('new_phishing_detection_model.keras')
# Define maximum length and number of words
max_url_length = 180
max_html_length = 2000
max_words = 10000
# Load the fitted tokenizers
with open('url_tokenizer.pkl', 'rb') as file:
url_tokenizer = pickle.load(file)
with open('html_tokenizer.pkl', 'rb') as file:
html_tokenizer = pickle.load(file)
# Load the label encoder
with open('label_encoder.pkl', 'rb') as file:
label_encoder = pickle.load(file)
# Define the prediction function
def predict_phishing(url, html):
cleaned_url = preprocess_url(url)
cleaned_html = preprocess_html(html)
new_url_sequences = url_tokenizer.texts_to_sequences([cleaned_url])
new_url_padded = pad_sequences(new_url_sequences, maxlen=max_url_length, padding='post', truncating='post')
new_html_sequences = html_tokenizer.texts_to_sequences([cleaned_html])
new_html_padded = pad_sequences(new_html_sequences, maxlen=max_html_length, padding='post', truncating='post')
new_predictions_prob = model.predict([new_url_padded, new_html_padded])
new_predictions = (new_predictions_prob > 0.6).astype(int) # Adjust threshold if needed
predicted_category = label_encoder.inverse_transform(new_predictions)[0]
predicted_probability = f"{new_predictions_prob[0][0]:.4f}"
return predicted_category.capitalize(), predicted_probability
# Create Gradio Interface
interface = gr.Interface(
fn=predict_phishing,
inputs=[
gr.components.Textbox(label="URL"),
gr.components.Textbox(label="HTML Snippet", lines=10, placeholder="Paste HTML content here")
],
outputs=[
gr.components.Textbox(label="Predicted Category"),
gr.components.Textbox(label="Predicted Probability")
],
title="Phishing Detection Model",
description="Enter a URL and its HTML content to predict if it's spam or legitimate. It's recommended to provide both for accurate results.",
live=True,
css="""
.interface-container {
border: 2px solid #4CAF50;
border-radius: 10px;
padding: 20px;
text-align: center;
}
.gr-textbox, .gr-textbox textarea, .gr-button {
margin-left: auto !important;
margin-right: auto !important;
}
"""
)
# Footer text
footer = gr.Markdown("""
---
<div style="text-align: center;">
Made with ❤️ by Ramadhirra<br>
Model by Ramadhirra<br>
WebUI by Ramadhirra
</div>
""")
# Combine the interface and footer
app = gr.Blocks()
with app:
interface.render()
footer.render()
# Launch the Gradio interface
app.launch() |