import gradio as gr import tensorflow as tf import numpy as np import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import re # Load the model model = tf.keras.models.load_model('new_phishing_detection_model.keras') # Compile the model with standard loss and metrics model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005), loss='binary_crossentropy', metrics=['accuracy', tf.keras.metrics.Precision(), tf.keras.metrics.Recall()]) # Preprocessing functions nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') STOPWORDS = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() def preprocess_url(url): url = url.lower() url = re.sub(r'https?://', '', url) url = re.sub(r'www\.', '', url) url = re.sub(r'[^a-zA-Z0-9]', ' ', url) url = re.sub(r'\s+', ' ', url).strip() tokens = word_tokenize(url) tokens = [word for word in tokens if word not in STOPWORDS] tokens = [lemmatizer.lemmatize(word) for word in tokens] return ' '.join(tokens) def preprocess_html(html): html = re.sub(r'<[^>]+>', ' ', html) html = html.lower() html = re.sub(r'https?://', '', html) html = re.sub(r'[^a-zA-Z0-9]', ' ', html) html = re.sub(r'\s+', ' ', html).strip() tokens = word_tokenize(html) tokens = [word for word in tokens if word not in STOPWORDS] tokens = [lemmatizer.lemmatize(word) for word in tokens] return ' '.join(tokens) max_url_length = 180 max_html_length = 2000 max_words = 10000 url_tokenizer = Tokenizer(num_words=max_words, char_level=True) html_tokenizer = Tokenizer(num_words=max_words) # Dummy fit to initialize tokenizers url_tokenizer.fit_on_texts(["dummy"]) html_tokenizer.fit_on_texts(["dummy"]) def preprocess_input(input_text, tokenizer, max_length): sequences = tokenizer.texts_to_sequences([input_text]) padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post', truncating='post') return padded_sequences def get_prediction(input_text, input_type): is_url = input_type == "URL" if is_url: cleaned_text = preprocess_url(input_text) input_data = preprocess_input(cleaned_text, url_tokenizer, max_url_length) input_data = [input_data, np.zeros((1, max_html_length))] # dummy HTML input else: cleaned_text = preprocess_html(input_text) input_data = preprocess_input(cleaned_text, html_tokenizer, max_html_length) input_data = [np.zeros((1, max_url_length)), input_data] # dummy URL input prediction = model.predict(input_data)[0][0] return prediction def phishing_detection(input_text, input_type): prediction = get_prediction(input_text, input_type) if prediction > 0.5: return f"Warning: This site is likely a phishing site! ({prediction:.2f})" else: return f"Safe: This site is not likely a phishing site. ({prediction:.2f})" iface = gr.Interface( fn=phishing_detection, inputs=[ gr.components.Textbox(lines=5, placeholder="Enter URL or HTML code"), gr.components.Radio(["URL", "HTML"], type="value", label="Input Type") ], outputs=gr.components.Textbox(label="Phishing Detection Result"), title="Phishing Detection Model", description="Check if a URL or HTML is Phishing.", theme="default" ) iface.launch()