File size: 7,526 Bytes
f7a5cb1
 
 
 
 
 
 
69a06cd
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a06cd
 
 
 
 
f7a5cb1
69a06cd
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a06cd
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969214b
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66da254
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from functools import partial
from typing import Any, Callable, Dict

import clip
import gradio as gr
from gradio_rerun import Rerun
import numpy as np
import trimesh
import rerun as rr
import torch

from utils.common_viz import init, get_batch
from utils.random_utils import set_random_seed
from utils.rerun import log_sample
from src.diffuser import Diffuser
from src.datasets.multimodal_dataset import MultimodalDataset

# ------------------------------------------------------------------------------------- #

batch_size, num_cams, num_verts = None, None, None

SAMPLE_IDS = [
    "2011_KAeAqaA0Llg_00005_00001",
    "2011_F_EuMeT2wBo_00014_00001",
    "2011_MCkKihQrNA4_00014_00000",
]
LABEL_TO_IDS = {
    "right": 0,
    "static": 1,
    "complex": 2,
}
EXAMPLES = [
    "While the character moves right, the camera trucks right.",
    "While the character moves right, the camera performs a push in.",
    "While the character moves right, the camera performs a pull out.",
    "While the character stays static, the camera performs a boom bottom.",
    "While the character stays static, the camera performs a boom top.",
    "While the character moves to the right, the camera trucks right alongside them. Once the character comes to a stop, the camera remains static.",  # noqa
    "While the character moves to the right, the camera remains static. Once the character comes to a stop, the camera pushes in.",  # noqa
]
DEFAULT_TEXT = [
    "While the character moves right, the camera [...].",
    "While the character remains static, [...].",
    "While the character moves to the right, the camera [...]. "
    "Once the character comes to a stop, the camera [...].",
]

HEADER = """

<div align="center">
<h1 style='text-align: center'>E.T. the Exceptional Trajectories</h2>
<a href="https://robincourant.github.io/info/"><strong>Robin Courant</strong></a>

<a href="https://nicolas-dufour.github.io/"><strong>Nicolas Dufour</strong></a>

<a href="https://triocrossing.github.io/"><strong>Xi Wang</strong></a>

<a href="http://people.irisa.fr/Marc.Christie/"><strong>Marc Christie</strong></a>

<a href="https://vicky.kalogeiton.info/"><strong>Vicky Kalogeiton</strong></a>
</div>


<div align="center">
    <a href="https://www.lix.polytechnique.fr/vista/projects/2024_et_courant/" class="button"><b>[Webpage]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/DIRECTOR" class="button"><b>[DIRECTOR]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/CLaTr" class="button"><b>[CLaTr]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/the-exceptional-trajectories" class="button"><b>[Data]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
</div>

<br/>
"""

# ------------------------------------------------------------------------------------- #


def get_normals(vertices: torch.Tensor, faces: torch.Tensor) -> torch.Tensor:
    num_frames, num_faces = vertices.shape[0], faces.shape[-2]
    faces = faces.expand(num_frames, num_faces, 3)

    normals = [
        trimesh.Trimesh(vertices=v, faces=f, process=False).vertex_normals
        for v, f in zip(vertices, faces)
    ]
    normals = torch.from_numpy(np.stack(normals))

    return normals


def generate(
    prompt: str,
    seed: int,
    guidance_weight: float,
    sample_label: str,
    # ----------------------- 脽#
    dataset: MultimodalDataset,
    device: torch.device,
    diffuser: Diffuser,
    clip_model: clip.model.CLIP,
) -> Dict[str, Any]:
    # Set arguments
    set_random_seed(seed)
    diffuser.gen_seeds = np.array([seed])
    diffuser.guidance_weight = guidance_weight

    # Inference
    sample_id = SAMPLE_IDS[LABEL_TO_IDS[sample_label]]
    seq_feat = diffuser.net.model.clip_sequential
    batch = get_batch(prompt, sample_id, clip_model, dataset, seq_feat, device)
    with torch.no_grad():
        out = diffuser.predict_step(batch, 0)

    # Run visualization
    padding_mask = out["padding_mask"][0].to(bool).cpu()
    padded_traj = out["gen_samples"][0].cpu()
    traj = padded_traj[padding_mask]
    padded_vertices = out["char_raw"]["char_vertices"][0]
    vertices = padded_vertices[padding_mask]
    faces = out["char_raw"]["char_faces"][0]
    normals = get_normals(vertices, faces)
    fx, fy, cx, cy = out["intrinsics"][0].cpu().numpy()
    K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    caption = out["caption_raw"][0]

    rr.init(f"{sample_id}")
    rr.save(".tmp_gr.rrd")
    log_sample(
        root_name="world",
        traj=traj.numpy(),
        K=K,
        vertices=vertices.numpy(),
        faces=faces.numpy(),
        normals=normals.numpy(),
        caption=caption,
        mesh_masks=None,
    )
    return "./.tmp_gr.rrd"


# ------------------------------------------------------------------------------------- #


@spaces.GPU
def main(gen_fn: Callable):
    theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")

    with gr.Blocks(theme=theme) as demo:
        gr.Markdown(HEADER)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Column(scale=2):
                    sample_str = gr.Dropdown(
                        choices=["static", "right", "complex"],
                        label="Character trajectory",
                        value="right",
                        interactive=True,
                    )
                    text = gr.Textbox(
                        placeholder="Type the camera motion you want to generate",
                        show_label=True,
                        label="Text prompt",
                        value=DEFAULT_TEXT[LABEL_TO_IDS[sample_str.value]],
                    )
                    seed = gr.Number(value=33, label="Seed")
                    guidance = gr.Slider(0, 10, value=1.4, label="Guidance", step=0.1)

                with gr.Column(scale=1):
                    btn = gr.Button("Generate", variant="primary")

            with gr.Column(scale=2):
                examples = gr.Examples(
                    examples=[[x, None, None] for x in EXAMPLES],
                    inputs=[text],
                )

        with gr.Row():
            output = Rerun()

        def load_example(example_id):
            processed_example = examples.non_none_processed_examples[example_id]
            return gr.utils.resolve_singleton(processed_example)

        def change_fn(change):
            sample_index = LABEL_TO_IDS[change]
            return gr.update(value=DEFAULT_TEXT[sample_index])

        sample_str.change(fn=change_fn, inputs=[sample_str], outputs=[text])

        inputs = [text, seed, guidance, sample_str]
        examples.dataset.click(
            load_example,
            inputs=[examples.dataset],
            outputs=examples.inputs_with_examples,
            show_progress=False,
            postprocess=False,
            queue=False,
        ).then(fn=gen_fn, inputs=inputs, outputs=[output])
        btn.click(fn=gen_fn, inputs=inputs, outputs=[output])
        text.submit(fn=gen_fn, inputs=inputs, outputs=[output])
    demo.queue().launch(share=False)


# ------------------------------------------------------------------------------------- #


if __name__ == "__main__":
    # Initialize the models and dataset
    diffuser, clip_model, dataset, device = init("config")
    generate_sample = partial(
        generate,
        dataset=dataset,
        device=device,
        diffuser=diffuser,
        clip_model=clip_model,
    )

    main(generate_sample)