Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,243 Bytes
f7a5cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from omegaconf.dictconfig import DictConfig
from typing import List, Tuple
from ema_pytorch import EMA
import numpy as np
import torch
from torchtyping import TensorType
import torch.nn as nn
import lightning as L
from utils.random_utils import StackedRandomGenerator
# ------------------------------------------------------------------------------------- #
batch_size, num_samples = None, None
num_feats, num_rawfeats, num_cams = None, None, None
RawTrajectory = TensorType["num_samples", "num_rawfeats", "num_cams"]
# ------------------------------------------------------------------------------------- #
class Diffuser(L.LightningModule):
def __init__(
self,
network: nn.Module,
guidance_weight: float,
ema_kwargs: DictConfig,
sampling_kwargs: DictConfig,
edm2_normalization: bool,
**kwargs,
):
super().__init__()
# Network and EMA
self.net = network
self.ema = EMA(self.net, **ema_kwargs)
self.guidance_weight = guidance_weight
self.edm2_normalization = edm2_normalization
self.sigma_data = network.sigma_data
# Sampling
self.num_steps = sampling_kwargs.num_steps
self.sigma_min = sampling_kwargs.sigma_min
self.sigma_max = sampling_kwargs.sigma_max
self.rho = sampling_kwargs.rho
self.S_churn = sampling_kwargs.S_churn
self.S_noise = sampling_kwargs.S_noise
self.S_min = sampling_kwargs.S_min
self.S_max = (
sampling_kwargs.S_max
if isinstance(sampling_kwargs.S_max, float)
else float("inf")
)
# ---------------------------------------------------------------------------------- #
def on_predict_start(self):
eval_dataset = self.trainer.datamodule.eval_dataset
self.modalities = list(eval_dataset.modality_datasets.keys())
self.get_matrix = self.trainer.datamodule.train_dataset.get_matrix
self.v_get_matrix = self.trainer.datamodule.eval_dataset.get_matrix
def predict_step(self, batch, batch_idx):
ref_samples, mask = batch["traj_feat"], batch["padding_mask"]
if len(self.modalities) > 0:
cond_k = [x for x in batch.keys() if "traj" not in x and "feat" in x]
cond_data = [batch[cond] for cond in cond_k]
conds = {}
for cond in cond_k:
cond_name = cond.replace("_feat", "")
if isinstance(batch[f"{cond_name}_raw"], dict):
for cond_name_, x in batch[f"{cond_name}_raw"].items():
conds[cond_name_] = x
else:
conds[cond_name] = batch[f"{cond_name}_raw"]
batch["conds"] = conds
else:
cond_data = None
# cf edm2 sigma_data normalization / https://arxiv.org/pdf/2312.02696.pdf
if self.edm2_normalization:
ref_samples *= self.sigma_data
_, gen_samples = self.sample(self.ema.ema_model, ref_samples, cond_data, mask)
batch["ref_samples"] = torch.stack([self.v_get_matrix(x) for x in ref_samples])
batch["gen_samples"] = torch.stack([self.get_matrix(x) for x in gen_samples])
return batch
# --------------------------------------------------------------------------------- #
def sample(
self,
net: torch.nn.Module,
traj_samples: RawTrajectory,
cond_samples: TensorType["num_samples", "num_feats"],
mask: TensorType["num_samples", "num_feats"],
external_seeds: List[int] = None,
) -> Tuple[RawTrajectory, RawTrajectory]:
# Pick latents
num_samples = traj_samples.shape[0]
seeds = self.gen_seeds if hasattr(self, "gen_seeds") else range(num_samples)
rnd = StackedRandomGenerator(self.device, seeds)
sz = [num_samples, self.net.num_feats, self.net.num_cams]
latents = rnd.randn_rn(sz, device=self.device)
# Generate trajectories.
generations = self.edm_sampler(
net,
latents,
class_labels=cond_samples,
mask=mask,
randn_like=rnd.randn_like,
guidance_weight=self.guidance_weight,
# ----------------------------------- #
num_steps=self.num_steps,
sigma_min=self.sigma_min,
sigma_max=self.sigma_max,
rho=self.rho,
S_churn=self.S_churn,
S_min=self.S_min,
S_max=self.S_max,
S_noise=self.S_noise,
)
return latents, generations
@staticmethod
def edm_sampler(
net,
latents,
class_labels=None,
mask=None,
guidance_weight=2.0,
randn_like=torch.randn_like,
num_steps=18,
sigma_min=0.002,
sigma_max=80,
rho=7,
S_churn=0,
S_min=0,
S_max=float("inf"),
S_noise=1,
):
# Time step discretization.
step_indices = torch.arange(num_steps, device=latents.device)
t_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
t_steps = torch.cat(
[torch.as_tensor(t_steps), torch.zeros_like(t_steps[:1])]
) # t_N = 0
# Main sampling loop.
bool_mask = ~mask.to(bool)
x_next = latents * t_steps[0]
bs = latents.shape[0]
for i, (t_cur, t_next) in enumerate(
zip(t_steps[:-1], t_steps[1:])
): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1)
if S_min <= t_cur <= S_max
else 0
)
t_hat = torch.as_tensor(t_cur + gamma * t_cur)
x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
if class_labels is not None:
class_label_knot = [torch.zeros_like(label) for label in class_labels]
x_hat_both = torch.cat([x_hat, x_hat], dim=0)
y_label_both = [
torch.cat([y, y_knot], dim=0)
for y, y_knot in zip(class_labels, class_label_knot)
]
bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0)
t_hat_both = torch.cat([t_hat.expand(bs), t_hat.expand(bs)], dim=0)
cond_denoised, denoised = net(
x_hat_both, t_hat_both, y=y_label_both, mask=bool_mask_both
).chunk(2, dim=0)
denoised = denoised + (cond_denoised - denoised) * guidance_weight
else:
denoised = net(x_hat, t_hat.expand(bs), mask=bool_mask)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
if class_labels is not None:
class_label_knot = [
torch.zeros_like(label) for label in class_labels
]
x_next_both = torch.cat([x_next, x_next], dim=0)
y_label_both = [
torch.cat([y, y_knot], dim=0)
for y, y_knot in zip(class_labels, class_label_knot)
]
bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0)
t_next_both = torch.cat(
[t_next.expand(bs), t_next.expand(bs)], dim=0
)
cond_denoised, denoised = net(
x_next_both, t_next_both, y=y_label_both, mask=bool_mask_both
).chunk(2, dim=0)
denoised = denoised + (cond_denoised - denoised) * guidance_weight
else:
denoised = net(x_next, t_next.expand(bs), mask=bool_mask)
d_prime = (x_next - denoised) / t_next
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next
|