Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
import numpy as np | |
from einops import rearrange | |
from typing import Optional, List | |
from torchtyping import TensorType | |
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1 | |
allow_ops_in_compiled_graph() | |
batch_size, num_cond_feats = None, None | |
class FusedMLP(nn.Sequential): | |
def __init__( | |
self, | |
dim_model: int, | |
dropout: float, | |
activation: nn.Module, | |
hidden_layer_multiplier: int = 4, | |
bias: bool = True, | |
): | |
super().__init__( | |
nn.Linear(dim_model, dim_model * hidden_layer_multiplier, bias=bias), | |
activation(), | |
nn.Dropout(dropout), | |
nn.Linear(dim_model * hidden_layer_multiplier, dim_model, bias=bias), | |
) | |
def _cast_if_autocast_enabled(tensor): | |
if torch.is_autocast_enabled(): | |
if tensor.device.type == "cuda": | |
dtype = torch.get_autocast_gpu_dtype() | |
elif tensor.device.type == "cpu": | |
dtype = torch.get_autocast_cpu_dtype() | |
else: | |
raise NotImplementedError() | |
return tensor.to(dtype=dtype) | |
return tensor | |
class LayerNorm16Bits(torch.nn.LayerNorm): | |
""" | |
16-bit friendly version of torch.nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
normalized_shape, | |
eps=1e-06, | |
elementwise_affine=True, | |
device=None, | |
dtype=None, | |
): | |
super().__init__( | |
normalized_shape=normalized_shape, | |
eps=eps, | |
elementwise_affine=elementwise_affine, | |
device=device, | |
dtype=dtype, | |
) | |
def forward(self, x): | |
module_device = x.device | |
downcast_x = _cast_if_autocast_enabled(x) | |
downcast_weight = ( | |
_cast_if_autocast_enabled(self.weight) | |
if self.weight is not None | |
else self.weight | |
) | |
downcast_bias = ( | |
_cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias | |
) | |
with torch.autocast(enabled=False, device_type=module_device.type): | |
return nn.functional.layer_norm( | |
downcast_x, | |
self.normalized_shape, | |
downcast_weight, | |
downcast_bias, | |
self.eps, | |
) | |
class StochatichDepth(nn.Module): | |
def __init__(self, p: float): | |
super().__init__() | |
self.survival_prob = 1.0 - p | |
def forward(self, x: Tensor) -> Tensor: | |
if self.training and self.survival_prob < 1: | |
mask = ( | |
torch.empty(x.shape[0], 1, 1, device=x.device).uniform_() | |
+ self.survival_prob | |
) | |
mask = mask.floor() | |
if self.survival_prob > 0: | |
mask = mask / self.survival_prob | |
return x * mask | |
else: | |
return x | |
class CrossAttentionOp(nn.Module): | |
def __init__( | |
self, attention_dim, num_heads, dim_q, dim_kv, use_biases=True, is_sa=False | |
): | |
super().__init__() | |
self.dim_q = dim_q | |
self.dim_kv = dim_kv | |
self.attention_dim = attention_dim | |
self.num_heads = num_heads | |
self.use_biases = use_biases | |
self.is_sa = is_sa | |
if self.is_sa: | |
self.qkv = nn.Linear(dim_q, attention_dim * 3, bias=use_biases) | |
else: | |
self.q = nn.Linear(dim_q, attention_dim, bias=use_biases) | |
self.kv = nn.Linear(dim_kv, attention_dim * 2, bias=use_biases) | |
self.out = nn.Linear(attention_dim, dim_q, bias=use_biases) | |
def forward(self, x_to, x_from=None, attention_mask=None): | |
if x_from is None: | |
x_from = x_to | |
if self.is_sa: | |
q, k, v = self.qkv(x_to).chunk(3, dim=-1) | |
else: | |
q = self.q(x_to) | |
k, v = self.kv(x_from).chunk(2, dim=-1) | |
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads) | |
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_heads) | |
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_heads) | |
if attention_mask is not None: | |
attention_mask = attention_mask.unsqueeze(1) | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attention_mask | |
) | |
x = rearrange(x, "b h n d -> b n (h d)") | |
x = self.out(x) | |
return x | |
class CrossAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim_q: int, | |
dim_kv: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
retrieve_attention_scores: bool = False, | |
use_layernorm16: bool = True, | |
): | |
super().__init__() | |
layer_norm = ( | |
nn.LayerNorm | |
if not use_layernorm16 or retrieve_attention_scores | |
else LayerNorm16Bits | |
) | |
self.retrieve_attention_scores = retrieve_attention_scores | |
self.initial_to_ln = layer_norm(dim_q, eps=1e-6) | |
attention_dim = min(dim_q, dim_kv) if attention_dim == 0 else attention_dim | |
self.ca = CrossAttentionOp( | |
attention_dim, num_heads, dim_q, dim_kv, is_sa=False, use_biases=use_biases | |
) | |
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = layer_norm(dim_q, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_q, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
def forward( | |
self, | |
to_tokens: Tensor, | |
from_tokens: Tensor, | |
to_token_mask: Optional[Tensor] = None, | |
from_token_mask: Optional[Tensor] = None, | |
) -> Tensor: | |
if to_token_mask is None and from_token_mask is None: | |
attention_mask = None | |
else: | |
if to_token_mask is None: | |
to_token_mask = torch.ones( | |
to_tokens.shape[0], | |
to_tokens.shape[1], | |
dtype=torch.bool, | |
device=to_tokens.device, | |
) | |
if from_token_mask is None: | |
from_token_mask = torch.ones( | |
from_tokens.shape[0], | |
from_tokens.shape[1], | |
dtype=torch.bool, | |
device=from_tokens.device, | |
) | |
attention_mask = from_token_mask.unsqueeze(1) * to_token_mask.unsqueeze(2) | |
attention_output = self.ca( | |
self.initial_to_ln(to_tokens), | |
from_tokens, | |
attention_mask=attention_mask, | |
) | |
to_tokens = to_tokens + self.ca_stochastic_depth(attention_output) | |
to_tokens = to_tokens + self.ffn_stochastic_depth( | |
self.ffn(self.middle_ln(to_tokens)) | |
) | |
return to_tokens | |
class SelfAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim_qkv: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
use_layer_scale: bool = False, | |
layer_scale_value: float = 0.0, | |
use_layernorm16: bool = True, | |
): | |
super().__init__() | |
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm | |
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.sa = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_qkv, | |
is_sa=True, | |
use_biases=use_biases, | |
) | |
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_qkv, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.use_layer_scale = use_layer_scale | |
if use_layer_scale: | |
self.layer_scale_1 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.layer_scale_2 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
def forward( | |
self, | |
tokens: torch.Tensor, | |
token_mask: Optional[torch.Tensor] = None, | |
): | |
if token_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = token_mask.unsqueeze(1) * torch.ones( | |
tokens.shape[0], | |
tokens.shape[1], | |
1, | |
dtype=torch.bool, | |
device=tokens.device, | |
) | |
attention_output = self.sa( | |
self.initial_ln(tokens), | |
attention_mask=attention_mask, | |
) | |
if self.use_layer_scale: | |
tokens = tokens + self.sa_stochastic_depth( | |
self.layer_scale_1 * attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.layer_scale_2 * self.ffn(self.middle_ln(tokens)) | |
) | |
else: | |
tokens = tokens + self.sa_stochastic_depth(attention_output) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.ffn(self.middle_ln(tokens)) | |
) | |
return tokens | |
class AdaLNSABlock(nn.Module): | |
def __init__( | |
self, | |
dim_qkv: int, | |
dim_cond: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
use_layer_scale: bool = False, | |
layer_scale_value: float = 0.1, | |
use_layernorm16: bool = True, | |
): | |
super().__init__() | |
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm | |
self.initial_ln = layer_norm(dim_qkv, eps=1e-6, elementwise_affine=False) | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.adaln_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(dim_cond, dim_qkv * 6, bias=use_biases), | |
) | |
# Zero init | |
nn.init.zeros_(self.adaln_modulation[1].weight) | |
nn.init.zeros_(self.adaln_modulation[1].bias) | |
self.sa = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_qkv, | |
is_sa=True, | |
use_biases=use_biases, | |
) | |
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = layer_norm(dim_qkv, eps=1e-6, elementwise_affine=False) | |
self.ffn = FusedMLP( | |
dim_model=dim_qkv, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.use_layer_scale = use_layer_scale | |
if use_layer_scale: | |
self.layer_scale_1 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.layer_scale_2 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
def forward( | |
self, | |
tokens: torch.Tensor, | |
cond: torch.Tensor, | |
token_mask: Optional[torch.Tensor] = None, | |
): | |
if token_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = token_mask.unsqueeze(1) * torch.ones( | |
tokens.shape[0], | |
tokens.shape[1], | |
1, | |
dtype=torch.bool, | |
device=tokens.device, | |
) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.adaln_modulation(cond).chunk(6, dim=-1) | |
) | |
attention_output = self.sa( | |
modulate_shift_and_scale(self.initial_ln(tokens), shift_msa, scale_msa), | |
attention_mask=attention_mask, | |
) | |
if self.use_layer_scale: | |
tokens = tokens + self.sa_stochastic_depth( | |
gate_msa.unsqueeze(1) * self.layer_scale_1 * attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
gate_mlp.unsqueeze(1) | |
* self.layer_scale_2 | |
* self.ffn( | |
modulate_shift_and_scale( | |
self.middle_ln(tokens), shift_mlp, scale_mlp | |
) | |
) | |
) | |
else: | |
tokens = tokens + gate_msa.unsqueeze(1) * self.sa_stochastic_depth( | |
attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
gate_mlp.unsqueeze(1) | |
* self.ffn( | |
modulate_shift_and_scale( | |
self.middle_ln(tokens), shift_mlp, scale_mlp | |
) | |
) | |
) | |
return tokens | |
class CrossAttentionSABlock(nn.Module): | |
def __init__( | |
self, | |
dim_qkv: int, | |
dim_cond: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
use_layer_scale: bool = False, | |
layer_scale_value: float = 0.0, | |
use_layernorm16: bool = True, | |
): | |
super().__init__() | |
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.ca = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_cond, | |
is_sa=False, | |
use_biases=use_biases, | |
) | |
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.ca_ln = layer_norm(dim_qkv, eps=1e-6) | |
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.sa = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_qkv, | |
is_sa=True, | |
use_biases=use_biases, | |
) | |
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_qkv, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.use_layer_scale = use_layer_scale | |
if use_layer_scale: | |
self.layer_scale_1 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.layer_scale_2 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
def forward( | |
self, | |
tokens: torch.Tensor, | |
cond: torch.Tensor, | |
token_mask: Optional[torch.Tensor] = None, | |
cond_mask: Optional[torch.Tensor] = None, | |
): | |
if cond_mask is None: | |
cond_attention_mask = None | |
else: | |
cond_attention_mask = torch.ones( | |
cond.shape[0], | |
1, | |
cond.shape[1], | |
dtype=torch.bool, | |
device=tokens.device, | |
) * token_mask.unsqueeze(2) | |
if token_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = token_mask.unsqueeze(1) * torch.ones( | |
tokens.shape[0], | |
tokens.shape[1], | |
1, | |
dtype=torch.bool, | |
device=tokens.device, | |
) | |
ca_output = self.ca( | |
self.ca_ln(tokens), | |
cond, | |
attention_mask=cond_attention_mask, | |
) | |
ca_output = torch.nan_to_num( | |
ca_output, nan=0.0, posinf=0.0, neginf=0.0 | |
) # Needed as some tokens get attention from no token so Nan | |
tokens = tokens + self.ca_stochastic_depth(ca_output) | |
attention_output = self.sa( | |
self.initial_ln(tokens), | |
attention_mask=attention_mask, | |
) | |
if self.use_layer_scale: | |
tokens = tokens + self.sa_stochastic_depth( | |
self.layer_scale_1 * attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.layer_scale_2 * self.ffn(self.middle_ln(tokens)) | |
) | |
else: | |
tokens = tokens + self.sa_stochastic_depth(attention_output) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.ffn(self.middle_ln(tokens)) | |
) | |
return tokens | |
class CAAdaLNSABlock(nn.Module): | |
def __init__( | |
self, | |
dim_qkv: int, | |
dim_cond: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
use_layer_scale: bool = False, | |
layer_scale_value: float = 0.1, | |
use_layernorm16: bool = True, | |
): | |
super().__init__() | |
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm | |
self.ca = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_cond, | |
is_sa=False, | |
use_biases=use_biases, | |
) | |
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.ca_ln = layer_norm(dim_qkv, eps=1e-6) | |
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.adaln_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(dim_cond, dim_qkv * 6, bias=use_biases), | |
) | |
# Zero init | |
nn.init.zeros_(self.adaln_modulation[1].weight) | |
nn.init.zeros_(self.adaln_modulation[1].bias) | |
self.sa = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_qkv, | |
is_sa=True, | |
use_biases=use_biases, | |
) | |
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_qkv, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.use_layer_scale = use_layer_scale | |
if use_layer_scale: | |
self.layer_scale_1 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.layer_scale_2 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
def forward( | |
self, | |
tokens: torch.Tensor, | |
cond_1: torch.Tensor, | |
cond_2: torch.Tensor, | |
cond_1_mask: Optional[torch.Tensor] = None, | |
token_mask: Optional[torch.Tensor] = None, | |
): | |
if token_mask is None and cond_1_mask is None: | |
cond_attention_mask = None | |
elif token_mask is None: | |
cond_attention_mask = cond_1_mask.unsqueeze(1) * torch.ones( | |
cond_1.shape[0], | |
cond_1.shape[1], | |
1, | |
dtype=torch.bool, | |
device=cond_1.device, | |
) | |
elif cond_1_mask is None: | |
cond_attention_mask = torch.ones( | |
tokens.shape[0], | |
1, | |
tokens.shape[1], | |
dtype=torch.bool, | |
device=tokens.device, | |
) * token_mask.unsqueeze(2) | |
else: | |
cond_attention_mask = cond_1_mask.unsqueeze(1) * token_mask.unsqueeze(2) | |
if token_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = token_mask.unsqueeze(1) * torch.ones( | |
tokens.shape[0], | |
tokens.shape[1], | |
1, | |
dtype=torch.bool, | |
device=tokens.device, | |
) | |
ca_output = self.ca( | |
self.ca_ln(tokens), | |
cond_1, | |
attention_mask=cond_attention_mask, | |
) | |
ca_output = torch.nan_to_num(ca_output, nan=0.0, posinf=0.0, neginf=0.0) | |
tokens = tokens + self.ca_stochastic_depth(ca_output) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.adaln_modulation(cond_2).chunk(6, dim=-1) | |
) | |
attention_output = self.sa( | |
modulate_shift_and_scale(self.initial_ln(tokens), shift_msa, scale_msa), | |
attention_mask=attention_mask, | |
) | |
if self.use_layer_scale: | |
tokens = tokens + self.sa_stochastic_depth( | |
gate_msa.unsqueeze(1) * self.layer_scale_1 * attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
gate_mlp.unsqueeze(1) | |
* self.layer_scale_2 | |
* self.ffn( | |
modulate_shift_and_scale( | |
self.middle_ln(tokens), shift_mlp, scale_mlp | |
) | |
) | |
) | |
else: | |
tokens = tokens + gate_msa.unsqueeze(1) * self.sa_stochastic_depth( | |
attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
gate_mlp.unsqueeze(1) | |
* self.ffn( | |
modulate_shift_and_scale( | |
self.middle_ln(tokens), shift_mlp, scale_mlp | |
) | |
) | |
) | |
return tokens | |
class PositionalEmbedding(nn.Module): | |
""" | |
Taken from https://github.com/NVlabs/edm | |
""" | |
def __init__(self, num_channels, max_positions=10000, endpoint=False): | |
super().__init__() | |
self.num_channels = num_channels | |
self.max_positions = max_positions | |
self.endpoint = endpoint | |
freqs = torch.arange(start=0, end=self.num_channels // 2, dtype=torch.float32) | |
freqs = 2 * freqs / self.num_channels | |
freqs = (1 / self.max_positions) ** freqs | |
self.register_buffer("freqs", freqs) | |
def forward(self, x): | |
x = torch.outer(x, self.freqs) | |
out = torch.cat([x.cos(), x.sin()], dim=1) | |
return out.to(x.dtype) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.0, max_len=10000): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model) | |
) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer("pe", pe) | |
def forward(self, x): | |
# not used in the final model | |
x = x + self.pe[:, : x.shape[1], :] | |
return self.dropout(x) | |
class TimeEmbedder(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
time_scaling: float, | |
expansion: int = 4, | |
): | |
super().__init__() | |
self.encode_time = PositionalEmbedding(num_channels=dim, endpoint=True) | |
self.time_scaling = time_scaling | |
self.map_time = nn.Sequential( | |
nn.Linear(dim, dim * expansion), | |
nn.SiLU(), | |
nn.Linear(dim * expansion, dim * expansion), | |
) | |
def forward(self, t: Tensor) -> Tensor: | |
time = self.encode_time(t * self.time_scaling) | |
time_mean = time.mean(dim=-1, keepdim=True) | |
time_std = time.std(dim=-1, keepdim=True) | |
time = (time - time_mean) / time_std | |
return self.map_time(time) | |
def modulate_shift_and_scale(x: Tensor, shift: Tensor, scale: Tensor) -> Tensor: | |
return x * (1 + scale).unsqueeze(1) + shift.unsqueeze(1) | |
# ------------------------------------------------------------------------------------- # | |
class BaseDirector(nn.Module): | |
def __init__( | |
self, | |
name: str, | |
num_feats: int, | |
num_cond_feats: int, | |
num_cams: int, | |
latent_dim: int, | |
mlp_multiplier: int, | |
num_layers: int, | |
num_heads: int, | |
dropout: float, | |
stochastic_depth: float, | |
label_dropout: float, | |
num_rawfeats: int, | |
clip_sequential: bool = False, | |
cond_sequential: bool = False, | |
device: str = "cuda", | |
**kwargs, | |
): | |
super().__init__() | |
self.name = name | |
self.label_dropout = label_dropout | |
self.num_rawfeats = num_rawfeats | |
self.num_feats = num_feats | |
self.num_cams = num_cams | |
self.clip_sequential = clip_sequential | |
self.cond_sequential = cond_sequential | |
self.use_layernorm16 = device == "cuda" | |
self.input_projection = nn.Sequential( | |
nn.Linear(num_feats, latent_dim), | |
PositionalEncoding(latent_dim), | |
) | |
self.time_embedding = TimeEmbedder(latent_dim // 4, time_scaling=1000) | |
self.init_conds_mappings(num_cond_feats, latent_dim) | |
self.init_backbone( | |
num_layers, latent_dim, mlp_multiplier, num_heads, dropout, stochastic_depth | |
) | |
self.init_output_projection(num_feats, latent_dim) | |
def forward( | |
self, | |
x: Tensor, | |
timesteps: Tensor, | |
y: List[Tensor] = None, | |
mask: Tensor = None, | |
) -> Tensor: | |
mask = mask.logical_not() if mask is not None else None | |
x = rearrange(x, "b c n -> b n c") | |
x = self.input_projection(x) | |
t = self.time_embedding(timesteps) | |
if y is not None: | |
y = self.mask_cond(y) | |
y = self.cond_mapping(y, mask, t) | |
x = self.backbone(x, y, mask) | |
x = self.output_projection(x, y) | |
return rearrange(x, "b n c -> b c n") | |
def init_conds_mappings(self, num_cond_feats, latent_dim): | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
def init_backbone(self): | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
def mask_cond( | |
self, cond: List[TensorType["batch_size", "num_cond_feats"]] | |
) -> TensorType["batch_size", "num_cond_feats"]: | |
bs = cond[0].shape[0] | |
if self.training and self.label_dropout > 0.0: | |
# 1-> use null_cond, 0-> use real cond | |
prob = torch.ones(bs, device=cond[0].device) * self.label_dropout | |
masked_cond = [] | |
common_mask = torch.bernoulli(prob) # Common to all modalities | |
for _cond in cond: | |
modality_mask = torch.bernoulli(prob) # Modality only | |
mask = torch.clip(common_mask + modality_mask, 0, 1) | |
mask = mask.view(bs, 1, 1) if _cond.dim() == 3 else mask.view(bs, 1) | |
masked_cond.append(_cond * (1.0 - mask)) | |
return masked_cond | |
else: | |
return cond | |
def init_output_projection(self, num_feats, latent_dim): | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: | |
raise NotImplementedError( | |
"This method should be implemented in the derived class" | |
) | |
class AdaLNDirector(BaseDirector): | |
def __init__( | |
self, | |
name: str, | |
num_feats: int, | |
num_cond_feats: int, | |
num_cams: int, | |
latent_dim: int, | |
mlp_multiplier: int, | |
num_layers: int, | |
num_heads: int, | |
dropout: float, | |
stochastic_depth: float, | |
label_dropout: float, | |
num_rawfeats: int, | |
clip_sequential: bool = False, | |
cond_sequential: bool = False, | |
device: str = "cuda", | |
**kwargs, | |
): | |
super().__init__( | |
name=name, | |
num_feats=num_feats, | |
num_cond_feats=num_cond_feats, | |
num_cams=num_cams, | |
latent_dim=latent_dim, | |
mlp_multiplier=mlp_multiplier, | |
num_layers=num_layers, | |
num_heads=num_heads, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
label_dropout=label_dropout, | |
num_rawfeats=num_rawfeats, | |
clip_sequential=clip_sequential, | |
cond_sequential=cond_sequential, | |
device=device, | |
) | |
assert not (clip_sequential and cond_sequential) | |
def init_conds_mappings(self, num_cond_feats, latent_dim): | |
self.joint_cond_projection = nn.Linear(sum(num_cond_feats), latent_dim) | |
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: | |
c_emb = torch.cat(cond, dim=-1) | |
return self.joint_cond_projection(c_emb) + t | |
def init_backbone( | |
self, | |
num_layers, | |
latent_dim, | |
mlp_multiplier, | |
num_heads, | |
dropout, | |
stochastic_depth, | |
): | |
self.backbone_module = nn.ModuleList( | |
[ | |
AdaLNSABlock( | |
dim_qkv=latent_dim, | |
dim_cond=latent_dim, | |
num_heads=num_heads, | |
mlp_multiplier=mlp_multiplier, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
use_layernorm16=self.use_layernorm16, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: | |
for block in self.backbone_module: | |
x = block(x, y, mask) | |
return x | |
def init_output_projection(self, num_feats, latent_dim): | |
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm | |
self.final_norm = layer_norm(latent_dim, eps=1e-6, elementwise_affine=False) | |
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) | |
self.final_adaln = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(latent_dim, latent_dim * 2, bias=True), | |
) | |
# Zero init | |
nn.init.zeros_(self.final_adaln[1].weight) | |
nn.init.zeros_(self.final_adaln[1].bias) | |
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: | |
shift, scale = self.final_adaln(y).chunk(2, dim=-1) | |
x = modulate_shift_and_scale(self.final_norm(x), shift, scale) | |
return self.final_linear(x) | |
class CrossAttentionDirector(BaseDirector): | |
def __init__( | |
self, | |
name: str, | |
num_feats: int, | |
num_cond_feats: int, | |
num_cams: int, | |
latent_dim: int, | |
mlp_multiplier: int, | |
num_layers: int, | |
num_heads: int, | |
dropout: float, | |
stochastic_depth: float, | |
label_dropout: float, | |
num_rawfeats: int, | |
num_text_registers: int, | |
clip_sequential: bool = True, | |
cond_sequential: bool = True, | |
device: str = "cuda", | |
**kwargs, | |
): | |
self.num_text_registers = num_text_registers | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.mlp_multiplier = mlp_multiplier | |
self.stochastic_depth = stochastic_depth | |
super().__init__( | |
name=name, | |
num_feats=num_feats, | |
num_cond_feats=num_cond_feats, | |
num_cams=num_cams, | |
latent_dim=latent_dim, | |
mlp_multiplier=mlp_multiplier, | |
num_layers=num_layers, | |
num_heads=num_heads, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
label_dropout=label_dropout, | |
num_rawfeats=num_rawfeats, | |
clip_sequential=clip_sequential, | |
cond_sequential=cond_sequential, | |
device=device, | |
) | |
assert clip_sequential and cond_sequential | |
def init_conds_mappings(self, num_cond_feats, latent_dim): | |
self.cond_projection = nn.ModuleList( | |
[nn.Linear(num_cond_feat, latent_dim) for num_cond_feat in num_cond_feats] | |
) | |
self.cond_registers = nn.Parameter( | |
torch.randn(self.num_text_registers, latent_dim), requires_grad=True | |
) | |
nn.init.trunc_normal_(self.cond_registers, std=0.02, a=-2 * 0.02, b=2 * 0.02) | |
self.cond_sa = nn.ModuleList( | |
[ | |
SelfAttentionBlock( | |
dim_qkv=latent_dim, | |
num_heads=self.num_heads, | |
mlp_multiplier=self.mlp_multiplier, | |
dropout=self.dropout, | |
stochastic_depth=self.stochastic_depth, | |
use_layernorm16=self.use_layernorm16, | |
) | |
for _ in range(2) | |
] | |
) | |
self.cond_positional_embedding = PositionalEncoding(latent_dim, max_len=10000) | |
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: | |
batch_size = cond[0].shape[0] | |
cond_emb = [ | |
cond_proj(rearrange(c, "b c n -> b n c")) | |
for cond_proj, c in zip(self.cond_projection, cond) | |
] | |
cond_emb = [ | |
self.cond_registers.unsqueeze(0).expand(batch_size, -1, -1), | |
t.unsqueeze(1), | |
] + cond_emb | |
cond_emb = torch.cat(cond_emb, dim=1) | |
cond_emb = self.cond_positional_embedding(cond_emb) | |
for block in self.cond_sa: | |
cond_emb = block(cond_emb) | |
return cond_emb | |
def init_backbone( | |
self, | |
num_layers, | |
latent_dim, | |
mlp_multiplier, | |
num_heads, | |
dropout, | |
stochastic_depth, | |
): | |
self.backbone_module = nn.ModuleList( | |
[ | |
CrossAttentionSABlock( | |
dim_qkv=latent_dim, | |
dim_cond=latent_dim, | |
num_heads=num_heads, | |
mlp_multiplier=mlp_multiplier, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
use_layernorm16=self.use_layernorm16, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: | |
for block in self.backbone_module: | |
x = block(x, y, mask, None) | |
return x | |
def init_output_projection(self, num_feats, latent_dim): | |
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm | |
self.final_norm = layer_norm(latent_dim, eps=1e-6) | |
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) | |
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: | |
return self.final_linear(self.final_norm(x)) | |
class InContextDirector(BaseDirector): | |
def __init__( | |
self, | |
name: str, | |
num_feats: int, | |
num_cond_feats: int, | |
num_cams: int, | |
latent_dim: int, | |
mlp_multiplier: int, | |
num_layers: int, | |
num_heads: int, | |
dropout: float, | |
stochastic_depth: float, | |
label_dropout: float, | |
num_rawfeats: int, | |
clip_sequential: bool = False, | |
cond_sequential: bool = False, | |
device: str = "cuda", | |
**kwargs, | |
): | |
super().__init__( | |
name=name, | |
num_feats=num_feats, | |
num_cond_feats=num_cond_feats, | |
num_cams=num_cams, | |
latent_dim=latent_dim, | |
mlp_multiplier=mlp_multiplier, | |
num_layers=num_layers, | |
num_heads=num_heads, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
label_dropout=label_dropout, | |
num_rawfeats=num_rawfeats, | |
clip_sequential=clip_sequential, | |
cond_sequential=cond_sequential, | |
device=device, | |
) | |
def init_conds_mappings(self, num_cond_feats, latent_dim): | |
self.cond_projection = nn.ModuleList( | |
[nn.Linear(num_cond_feat, latent_dim) for num_cond_feat in num_cond_feats] | |
) | |
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: | |
for i in range(len(cond)): | |
if cond[i].dim() == 3: | |
cond[i] = rearrange(cond[i], "b c n -> b n c") | |
cond_emb = [cond_proj(c) for cond_proj, c in zip(self.cond_projection, cond)] | |
cond_emb = [c.unsqueeze(1) if c.dim() == 2 else cond_emb for c in cond_emb] | |
cond_emb = torch.cat([t.unsqueeze(1)] + cond_emb, dim=1) | |
return cond_emb | |
def init_backbone( | |
self, | |
num_layers, | |
latent_dim, | |
mlp_multiplier, | |
num_heads, | |
dropout, | |
stochastic_depth, | |
): | |
self.backbone_module = nn.ModuleList( | |
[ | |
SelfAttentionBlock( | |
dim_qkv=latent_dim, | |
num_heads=num_heads, | |
mlp_multiplier=mlp_multiplier, | |
dropout=dropout, | |
stochastic_depth=stochastic_depth, | |
use_layernorm16=self.use_layernorm16, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: | |
bs, n_y, _ = y.shape | |
mask = torch.cat([torch.ones(bs, n_y, device=y.device), mask], dim=1) | |
x = torch.cat([y, x], dim=1) | |
for block in self.backbone_module: | |
x = block(x, mask) | |
return x | |
def init_output_projection(self, num_feats, latent_dim): | |
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm | |
self.final_norm = layer_norm(latent_dim, eps=1e-6) | |
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) | |
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: | |
num_y = y.shape[1] | |
x = x[:, num_y:] | |
return self.final_linear(self.final_norm(x)) | |