Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
# ---------------------------------------------------------------------------- | |
# Improved preconditioning proposed in the paper "Elucidating the Design | |
# Space of Diffusion-Based Generative Models" (EDM). | |
class RnEDMPrecond(nn.Module): | |
def __init__(self, sigma_data: float = 0.5, module: nn.Module = None, **kwargs): | |
super().__init__() | |
self.sigma_data = sigma_data | |
self.model = module | |
self.num_rawfeats = module.num_rawfeats | |
self.num_feats = module.num_feats | |
self.num_cams = module.num_cams | |
def forward(self, x, sigma, y=None, mask=None): | |
""" | |
x: [batch_size, num_feats, max_frames], denoted x_t in the paper | |
sigma: [batch_size] (int) | |
""" | |
sigma = sigma.reshape(-1, 1, 1) | |
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) | |
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2).sqrt() | |
c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt() | |
c_noise = sigma.log() / 4 | |
F_x = self.model(c_in * x, c_noise.flatten(), y=y, mask=mask) | |
D_x = c_skip * x + c_out * F_x | |
return D_x | |