Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import random | |
import torch | |
def set_random_seed(seed: int): | |
torch.manual_seed((seed) % (1 << 31)) | |
torch.cuda.manual_seed((seed) % (1 << 31)) | |
torch.cuda.manual_seed_all((seed) % (1 << 31)) | |
np.random.seed((seed) % (1 << 31)) | |
random.seed((seed) % (1 << 31)) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
class StackedRandomGenerator: | |
""" | |
Wrapper for torch.Generator that allows specifying a different random seed for each | |
sample in a minibatch. | |
""" | |
def __init__(self, device, seeds): | |
super().__init__() | |
self.generators = [ | |
torch.Generator(device).manual_seed(int(seed) % (1 << 31)) for seed in seeds | |
] | |
def randn_rn(self, size, **kwargs): | |
assert size[0] == len(self.generators) | |
return torch.stack( | |
[torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators] | |
) | |
def randn_like(self, input): | |
return self.randn_rn( | |
input.shape, dtype=input.dtype, layout=input.layout, device=input.device | |
) | |
def randint(self, *args, size, **kwargs): | |
assert size[0] == len(self.generators) | |
return torch.stack( | |
[ | |
torch.randint(*args, size=size[1:], generator=gen, **kwargs) | |
for gen in self.generators | |
] | |
) | |