Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import os | |
import os.path as osp | |
import pickle | |
import subprocess | |
from typing import Any | |
import h5py | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchaudio | |
from torchtyping import TensorType | |
num_channels, num_frames, height, width = None, None, None, None | |
def create_dir(dir_name: str): | |
"""Create a directory if it does not exist yet.""" | |
if not osp.exists(dir_name): | |
os.makedirs(dir_name) | |
def move_files(source_path: str, destpath: str): | |
"""Move files from `source_path` to `dest_path`.""" | |
subprocess.call(["mv", source_path, destpath]) | |
def load_pickle(pickle_path: str) -> Any: | |
"""Load a pickle file.""" | |
with open(pickle_path, "rb") as f: | |
data = pickle.load(f) | |
return data | |
def load_hdf5(hdf5_path: str) -> Any: | |
with h5py.File(hdf5_path, "r") as h5file: | |
data = {key: np.array(value) for key, value in h5file.items()} | |
return data | |
def save_hdf5(data: Any, hdf5_path: str): | |
with h5py.File(hdf5_path, "w") as h5file: | |
for key, value in data.items(): | |
h5file.create_dataset(key, data=value) | |
def save_pickle(data: Any, pickle_path: str): | |
"""Save data in a pickle file.""" | |
with open(pickle_path, "wb") as f: | |
pickle.dump(data, f, protocol=4) | |
def load_txt(txt_path: str): | |
"""Load a txt file.""" | |
with open(txt_path, "r") as f: | |
data = f.read() | |
return data | |
def save_txt(data: str, txt_path: str): | |
"""Save data in a txt file.""" | |
with open(txt_path, "w") as f: | |
f.write(data) | |
def load_pth(pth_path: str) -> Any: | |
"""Load a pth (PyTorch) file.""" | |
data = torch.load(pth_path) | |
return data | |
def save_pth(data: Any, pth_path: str): | |
"""Save data in a pth (PyTorch) file.""" | |
torch.save(data, pth_path) | |
def load_csv(csv_path: str, header: Any = None) -> pd.DataFrame: | |
"""Load a csv file.""" | |
try: | |
data = pd.read_csv(csv_path, header=header) | |
except pd.errors.EmptyDataError: | |
data = pd.DataFrame() | |
return data | |
def save_csv(data: Any, csv_path: str): | |
"""Save data in a csv file.""" | |
pd.DataFrame(data).to_csv(csv_path, header=False, index=False) | |
def load_json(json_path: str, header: Any = None) -> pd.DataFrame: | |
"""Load a json file.""" | |
with open(json_path, "r") as f: | |
data = json.load(f) | |
return data | |
def save_json(data: Any, json_path: str): | |
"""Save data in a json file.""" | |
with open(json_path, "w") as json_file: | |
json.dump(data, json_file) | |
def load_audio(audio_path: str, **kwargs): | |
"""Load an audio file.""" | |
waveform, sample_rate = torchaudio.load(audio_path, **kwargs) | |
return waveform, sample_rate | |
def save_audio( | |
data: TensorType["num_channels", "num_frames"], | |
audio_path: str, | |
sample_rate: int = 44100, | |
): | |
"""Save data in an audio file.""" | |
torchaudio.save(audio_path, data, sample_rate) | |